2,083
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Bacteria–bacteriophage cycles facilitate Cholera outbreak cycles: an indirect Susceptible-Infected-Recovered-Bacteria- Phage (iSIRBP) model-based mathematical study

, , ORCID Icon & ORCID Icon
Pages 29-43 | Received 10 Mar 2021, Accepted 26 Nov 2021, Published online: 07 Jan 2022

References

  • Bacteriophage makes Vibrio Cholerae deadly, Lab Med. 28(1) (1997), pp. 8–9.
  • S. Bhandare, J. Colom, A. Baig, J.M. Ritchie, H. Bukhari, M.A. Shah, B.L. Sarkar, J. Su, B. Wren, P. Barrow, and R.J. Atterbury, Reviving phage therapy for the treatment of cholera, J. Infect. Dis. 219(5) (2019), pp. 786–794.
  • V. Capasso and S.L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemiol. Sante. Publique. 27(2) (1979), pp. 121–132.
  • R.A. Cash, S.I. Music, J.P. Libonati, M.J. Snyder, R.P. Wenzel, and R.B. Hornick, Response of man to infection with Vibrio cholerae. I. Clinical, serologic, and bacteriologic responses to a known inoculum, J. Infect. Dis. 129(1) (1974), pp. 45–52.
  • C.T. Codeo, Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir, BMC Infect. Dis. 1(1) (2001), pp. 1–14.
  • R.R. Colwell, P. Brayton, D. Herrington, B. Tall, A. Huq, and M.M. Levine, Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine, World J. Microbiol. Biotechnol. 12(1) (1996), pp. 28–31.
  • R.A. Finkelstein, Cholera, Vibrio cholerae O1 and O139, and other pathogenic vibrios 4th ed., Medical Microbiology, 1996.
  • D.M. Hartley, J.G. Morris Jr, and D.L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3(1) (2006), pp. e7.
  • M.S. Islam, B.S. Drasar, and R.B. Sack, Probable role of blue-green algae in maintaining endemicity and seasonality of cholera in Bangladesh: A hypothesis, J. Diarrhoeal. Dis. Res. 12(4) (1994), pp. 245–256.
  • M.A. Jensen, S.M. Faruque, J.J. Mekalanos, and B.R. Levin, Modeling the role of bacteriophage in the control of cholera outbreaks, PNAS 103(12) (2006), pp. 4652–4657.
  • R. I. Joh, H. Wang, H. Weiss, and J. S. Weitz, Dynamics of indirectly transmitted infectious diseases with immunological threshold, Bull. Math. Biol. 71(4) (2009), pp. 845–862.
  • J.D. Kong, W. Davis, and H. Wang, Dynamics of a cholera transmission model with immunological threshold and natural phage control in reservoir, Bull. Math. 76(8) (2014), pp. 2025–2051.
  • J.F. Miller, Bacteriophage and the evolution of epidemic cholera, Infect. Immun. 71(6) (2003), pp. 2981–2982.
  • Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D.L. Smith, and J.G. Morris, Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe, PNAS 108(21) (2011), pp.8767–8772.
  • E.J. Nelson, J.B. Harris, J.G. Morris, S.B. Calderwood, and A. Camilli, Cholera transmission: the host, pathogen and bacteriophage dynamic, Nat. Rev. Microbiol. 7(10) (2009), pp. 693–702.
  • C.A. Silva-Valenzuela and A. Camilli, Niche adaptation limits bacteriophage predation of Vibrio cholerae in a nutrient-poor aquatic environment, PNAS 116(5) (2019), pp. 1627–1632.
  • J. Snow, On the Mode of Communication of Cholera, John Churchill, London, 1855.
  • J.P. Tian and J. Wang, Global stability for cholera epidemic models, Math. Biosci. 232(1) (2011), pp. 31–41.
  • World Health Organization, Cholera. Available at https://www.who.int/news-room/fact-sheets/detail/cholera.
  • M. Yen, L.S. Cairns, and A. Camilli, A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models, Nat. Commun. 8(1) (2017), pp. 1–7.