1,128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The effect of spatial dynamics on the behaviour of an environmentally transmitted disease

, & ORCID Icon
Pages 144-159 | Received 05 Apr 2021, Accepted 14 Mar 2022, Published online: 11 Apr 2022

References

  • R.M. Anderson and R.M. May, Infectious Diseases of Humans, OUP Oxford, Oxford, 1992.
  • L.G. Arlian and M.S. Morgan, A review of Sarcoptes scabiei: Past, present and future, Parasit. Vectors 10(1) (2017), p. 297.
  • L.G. Arlian, R.A. Runyan, S. Achar, and S.A. Estes, Survival and infectivity of sarcoptes scabiei var. canis and var. hominis, J. Am. Acad. Dermatol. 11(2) (1984), pp. 210–215.
  • F. Astorga, S. Carver, E.S. Almberg, G.R. Sousa, K. Wingfield, K.D. Niedringhaus, P. Van Wick, L. Rossi, Y. Xie, P. Cross, S. Angelone, C. Gortázar, and L.E. Escobar, International meeting on sarcoptic mange in wildlife, June 2018, Blacksburg, Virginia, USA, Parasit. Vectors 11(1) (2018), p. 449.
  • S.C. Banks, L.F. Skerratt, and A.C. Taylor, Female dispersal and relatedness structure in common wombats (vombatus ursinus), J. Zool. 256(3) (2002), pp. 389–399.
  • N.J. Beeton, S. Carver, and L.K. Forbes, A model for the treatment of environmentally transmitted sarcoptic mange in bare-nosed wombats (vombatus ursinus), J. Theor. Biol. 462 (2019), pp. 466–474.
  • N.J. Beeton, L.K. Forbes, and S. Carver, Comparing modes of transmission for sarcoptic mange dynamics and management in bare-nosed wombats, Lett. Biomath. 8(1) (2021), p. 318.
  • S. Blumberg and J.O. Lloyd-Smith, Inference of R0 and transmission heterogeneity from the size distribution of stuttering chains, PLoS Comput. Biol. 9(5) (2013), p. e1002993.
  • B.M. Bolker, A. Kleczkowski, and B.T. Grenfell, Seasonality and extinction in chaotic metapopulations, Proc. R. Soc. Lond. B: Biol. Sci. 259(1354) (1995), pp. 97–103.
  • E. Browne, M.M. Driessen, R. Ross, M. Roach, and S. Carver, Environmental suitability of bare-nosed wombat burrows for sarcoptes scabiei, Int. J. Parasitol. Parasites Wildl. 16 (2021), pp. 37–47.
  • A.A. Cunningham, P. Daszak, and J.L.N. Wood, One health, emerging infectious diseases and wildlife: Two decades of progress? Philos. Trans. R. Soc. B: Biol. Sci. 372(1725) (2017), p. 20160167.
  • M.M. Driessen, E. Dewar, S. Carver, and R. Gales, Conservation status of common wombats in Tasmania. I: Incidence of mange and its significance, Pac. Conserv. Biol. 28(2) (2022), pp. 103–114.
  • E.A. Eskew and B.D. Todd, Parallels in amphibian and bat declines from pathogenic fungi, Emerging Infect. Dis. 19(3) (2013), pp. 379–385.
  • T.A. Fraser, M. Charleston, A. Martin, A. Polkinghorne, and S. Carver, The emergence of sarcoptic mange in Australian wildlife: An unresolved debate, Parasit. Vectors 9(1) (2016), p. 316.
  • W.F. Frick, S.J. Puechmaille, and C.K.R. Willis, White-nose syndrome in bats, in Bats in the Anthropocene: Conservation of Bats in a Changing World, C.C. Voigt and T. Kingston, ed., Springer International Publishing, New York, 2015. pp. 245–262.
  • G. Guzzetta, V. Tagliapietra, S.E. Perkins, H.C. Hauffe, P. Poletti, S. Merler, and A. Rizzoli, Population dynamics of wild rodents induce stochastic fadeouts of a zoonotic pathogen, J. Anim. Ecol.86(3) (2017), pp. 451–459.
  • P.R. Hosseini, A.A. Dhondt, and A.P. Dobson, Spatial spread of an emerging infectious disease: Conjunctivitis in house finches, Ecology 87(12) (2006), pp. 3037–3046.
  • P. Hudson, The Ecology of Wildlife Diseases, Oxford University Press, New York, 2002.
  • A. Källén, P. Arcuri, and J.D. Murray, A simple model for the spatial spread and control of rabies, J. Theor. Biol. 116(3) (1985), pp. 377–393.
  • C. Karimkhani, D.V. Colombara, A.M. Drucker, S.A. Norton, R. Hay, D. Engelman, A. Steer, M.Whitfeld, M. Naghavi, and R.P. Dellavalle, The global burden of scabies: A cross-sectional analysis from the global burden of disease study 2015, Lancet Infect. Dis. 17(12) (2017), pp. 1247–1254.
  • M.J. Keeling and P. Rohani, Estimating spatial coupling in epidemiological systems: A mechanistic approach, Ecol. Lett. 5(1) (2002), pp. 20–29.
  • W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A 115(772) (1927), pp. 700–721.
  • J. Lourenço and M. Recker, Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue, PLoS Comput. Biol. 9(10) (2013), p. e1003308.
  • A. Lunelli, An SEI model for sarcoptic mange among chamois, J. Biol. Dyn. 4(2) (2009), pp. 140–157.
  • R.W. Martin, K.A. Handasyde, and L.F. Skerratt, Current distribution of sarcoptic mange in wombats, Aust. Vet. J. 76(6) (1998), pp. 411–414.
  • A.M. Martin, C.P. Burridge, J. Ingram, T.A. Fraser, and S. Carver, Invasive pathogen drives host population collapse: Effects of a travelling wave of sarcoptic mange on bare-nosed wombats, J. Appl. Ecol. 55(1) (2018), pp. 331–341.
  • A.M. Martin, S.A. Richards, T.A. Fraser, A. Polkinghorne, C.P. Burridge, and S. Carver, Population-scale treatment informs solutions for control of environmentally transmitted wildlife disease, J. Appl. Ecol. 56(10) (2019), pp. 2363–2375.
  • T. Mononen and L. Ruokolainen, Spatial disease dynamics of free-living pathogens under pathogen predation, Sci. Rep. 7(1) (2017), p. 7729.
  • J.V. Noble, Geographic and temporal development of plagues, Nature 250(5469) (1974), pp. 726–729.
  • D.B. Pence and E. Ueckermann, Sarcoptic mange in wildlife, Rev. Sci. Tech. 21(2) (2002), pp. 385–398.
  • I. Phillips, Ecology of infectious diseases in natural populations, B.T. Grenfell and A.P. Dobson, eds., University Press, Cambridge, 1995, Clin. Microbiol. Infect. 4(9) (1998), p. 536.
  • M. Robinson, N.I. Stilianakis, and Y. Drossinos, Spatial dynamics of airborne infectious diseases, J. Theor. Biol. 297 (2012), pp. 116–126.
  • L. Rossi, C. Fraquelli, U. Vesco, R. Permunian, G.M. Sommavilla, G. Carmignola, R. Da Pozzo, and P.G. Meneguz, Descriptive epidemiology of a scabies epidemic in chamois in the Dolomite Alps, Italy, Eur. J. Wildl. Res. 53(2) (2007), pp. 131–141.
  • L.F. Skerratt, Clinical response of captive common wombats (vombatus ursinus) infected with sarcoptes scabiei var. wombati, J. Wildl. Dis. 39(1) (2003), pp. 179–192.
  • L.F. Skerratt, R.W. Martin, and K.A. Handasyde, Sarcoptic mange in wombats, Aust. Vet. J. 76(6) (1998), pp. 408–410.
  • C.D. Soulsbury, G. Iossa, P.J. Baker, N.C. Cole, S.M. Funk, and S. Harris, The impact of sarcoptic mange sarcoptes scabiei on the British Fox vulpes vulpes population, Mol. Ecol.15(14) (2007), pp. i–xviii.
  • E.A. Stanley, D.L. Brown, and J.D. Murray, On the spatial spread of rabies among foxes, Proc. R. Soc. Lond. B., Biol. Sci. 229(1255) (1986), pp. 111–150.
  • S.T. Stoddard, B.M. Forshey, A.C. Morrison, V.A. Paz-Soldan, G.M. Vazquez-Prokopec, H. Astete, R.C. Reiner, S. Vilcarromero, J.P. Elder, E.S. Halsey, T.J. Kochel, U. Kitron, and T.W. Scott, House-to-house human movement drives dengue virus transmission, Proc. Natl. Acad. Sci. 110(3) (2012), pp. 994–999.
  • J. Tamura, J. Ingram, A.M. Martin, C.P. Burridge, and S. Carver, Contrasting population manipulations reveal resource competition between two large marsupials: Bare-nosed wombats and eastern grey kangaroos, Oecologia 197(2) (2021), pp. 313–325.
  • D.M. Tompkins, S. Carver, M.E. Jones, M. Krkosek, and L.F. Skerratt, Emerging infectious diseases of wildlife: A critical perspective, Trends Parasitol. 31(4) (2015), pp. 149–159.
  • B. Triggs, Wombats, 2nd ed., CSIRO Publishing, Collingwood VIC, 2009.
  • P. Van Rooij, A. Martel, F. Haesebrouck, and F. Pasmans, Amphibian chytridiomycosis: A review with focus on fungus-host interactions, Vet. Res. 46(1) (2015), p. 137.
  • L.A. White, J.D. Forester, and M.E. Craft, Dynamic, spatial models of parasite transmission in wildlife: Their structure, applications and remaining challenges, J. Anim. Ecol. 87(3) (2017), pp. 559–580.
  • World Health Organisation. Scabies. (2017). https://www.who.int/news-room/fact-sheets/detail/scabies.