1,144
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Dynamics analysis of stage-structured wild and sterile mosquito interaction impulsive model

, &
Pages 464-479 | Received 08 Dec 2021, Accepted 10 May 2022, Published online: 02 Jun 2022

References

  • S. Ai, J. Li, J.S. Yu, and B. Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Sys. B 27(6) (2022), pp. 3039–3052.
  • D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, CRC Press, Vol. 2, 1993. 26–30.
  • H.J. Barclay, Pest population stability under sterile releases, Res. Popul. Ecol. (Kyoto) 24(2) (1982), pp. 405–416.
  • H.J. Barclay, Modeling incomplete sterility in a sterile release program: Interactions with other factors, Popul. Ecol. 43(3) (2001), pp. 197–206.
  • H. Barclay and M. Mackauer, The sterile insect release method for pest control: A density-dependent model, Environ. Entomol. 9(6) (1980), pp. 810–817.
  • H.J. Barclay, Mathematical models for the use of sterile insects, Sterile Insect Technique, Springer, Dordrecht, 2005, pp. 147–174.
  • P.-A. Bliman, D. Cardona-Salgado, Y. Dumont, and O. Vasilieva, Implementation of control strategies for sterile insect techniques, Math. Biosci. 314 (2019), pp. 43–60.
  • L. Cai, S. Ai, and J. Li, Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes, SIAM. J. Appl. Math. 74(6) (2014), pp. 1786–1809.
  • A.N. Davis, J.B. Gahan, D.F. Weidhaas, and C.N. Smith, Exploratory studies on gamma radiation for the sterilization and control of Anopheles quadrimaculatus, J. Econ. Entomol. 52(5) (1959), pp. 868–870.
  • V.A. Dyck and J.P. Hendrichs, Robinson, Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management, Springer, Dordrecht, 2005.
  • K. Renee Fister, M.L. McCarthy, S.F. Oppenheimer, and C. Collins, Optimal control of insects through sterile insect release and habitat modification, Mathematical Biosciences 244(2) (2013), pp. 201–212.
  • J.C. Flores, A mathematical model for wild and sterile species in competition: Immigration, Phys. A: Stat. Mech. Appl. 328(1–2) (2003), pp. 214–224.
  • R.M. Gleiser, J. Urrutia, and D.E. Gorla, Effects of crowding on populations of Aedes albifasciatus larvae under laboratory conditions, Entomol. Exp. Appl. 95(2) (2000), pp. 135–140.
  • J. Hendrichs, A.S. Robinson, J.P. Cayol, and W. Enkerlin, Medfly areawide sterile insect technique programmes for prevention, suppression or eradication: The importance of mating behavior studies, Florida Entomol 85(1) (2002), pp. 1–13.
  • M.Z. Huang and X.Y. Song, Modelling and analysis of impulsive releases of sterile mosquitoes, J. Biol. Dyn. 11(1) (2017), pp. 147–171.
  • D. Kaye, Breakthrough in mosquitopacked drones to combat Zika in Brazil, Clin. Infect. Dis. 2(67) (2018), pp. 2.
  • A. Korobeinikov and G.C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett. 15(8) (2002), pp. 955–960.
  • V. Lakshmikantham and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, 1989.
  • J. Li, Simple stage-structured models for wild and transgenic mosquito populations, J. Diff. Equ. Appl. 15(4) (2009), pp. 327–347.
  • J. Li, Malaria model with stage-structured mosquitoes, Math. Biosci. Eng. 8(3) (2011), pp. 753–768.
  • J. Li, L. Cai, and Y. Li, Stage-structured wild and sterile mosquito population models and their dynamics, J. Biol. Dyn. 11(sup 1) (2017), pp. 79–101.
  • Y.Z. Li and X.N. Liu, An impulsive model for Wolbachia infection control of mosquito-borne diseases with general birth and death rate functions, Nonlinear Anal Real World Appl 37 (2017), pp. 412–432.
  • M.-T. Li, G.-Q. Sun, L. Yakob, H.-P. Zhu, Z. Jin, W.-Y. Zhang, and J. Ma, The driving force for 2014 dengue outbreak in Guangdong, China, PLos One 11(11) (2016), pp. e0166211.
  • A. Meats, Demographic analysis of sterile insect trials with the Queensland fruit fly 'Bactrocera tryoni' (Froggatt) (Diptera: Tephritidae), Gen Appl Entomol 27 (1996), pp. 2–12.
  • T.P. Monath, Dengue: the risk to developed and developing countries, Proc. Natl. Acad. Sci. 91(7) (1994), pp. 2395–2400.
  • S. Moriya and T. Miyatake, Eradication programs of two sweetpotato pests, Cylas formicarius and Euscepes postfasciatus, in Japan with special reference to their dispersal ability, Jpn Agric. Res. Quart. 35(4) (2001), pp. 227–234.
  • S. Nundloll, L. Mailleret, and F. Grognard, Two models of interfering predators in impulsive biological control, J. Biol. Dyn. 4(1) (2010), pp. 102–114.
  • D.L. Scarnecchia, Mosquitoes and their control, Ann. Trop. Med. Parasitol. 104(6) (2003), pp. 687–688.
  • C.M. Stone and M. Somers, Transient population dynamics of mosquitoes during sterile male releases: Modelling mating behaviour and perturbations of life history parameters, PLoS ONE 8(9) (2013), pp. e76228.
  • E. Waltz, US government approves 'killer' mosquitoes to fight disease, Nature. (2017), pp. 22959.
  • S. Wang and Q.D. Huang, The sterile insect release technique in a predator-prey system with monotone functional response, Electron. J. Qual. Theory. Differ. Equ. 2016 (2016), pp. 1–20.
  • W. Yiguan, L. Xin, L. Chengling, T. Su, J. Jianchao, G. Yuhong, R. Dongsheng, Y. Zhicong, L. Qiyong, and M. Fengxia, A survey of insecticide resistance in Aedes albopictus (Diptera: Culicidae) during a 2014 dengue fever outbreak in Guangzhou, China, J. Econ. Entomol. 110(1) (2017), pp. 239–244.
  • S.M. White, P. Rohani, and S.M. Sait, Modelling pulsed releases for sterile insect techniques: Fitness costs of sterile and transgenic males and the effects on mosquito dynamics, J. Appl. Ecol. 47(6) (2010), pp. 1329–1339.
  • L. Yakob, L. Alphey, and M.B. Bonsall, Aedes aegypti control: The concomitant role of competition, space and transgenic technologies, J. Appl. Ecol. 45(4) (2008), pp. 1258–1265.
  • J.S. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM. J. Appl. Math. 78(6) (2018), pp. 3168–3187.
  • J.S. Yu, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equ. 269(12) (2020), pp. 10395–10415.
  • J.S. Yu and J. Li, A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period, J. Math. Biol. 84(3) (2022), pp. 1–19.
  • X. Zhang, Q. Liu, and H. Zhu, Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control, J. Math. Biol. 81 (2020), pp. 243–276.
  • X. Zhang, S. Tang, R.A. Cheke, and H. Zhu, Modeling the effects of augmentation strategies on the control of dengue fever with an impulsive differential equation, Bull. Math. Biol. 78(10) (2016), pp. 1968–2010.
  • X. Zhang, S. Tang, Q. Liu, R.A. Cheke, and H. Zhu, Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease, Math Biosci 299 (2018), pp. 58–72.
  • B. Zheng, J.S. Li, and J. Yu, Existence and stability of periodic solutions in a mosquito population suppression model with time delay, J. Differ. Equ. 315 (2022), pp. 159–178.
  • B. Zheng, J.S. Yu, and J. Li, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM. J. Appl. Math. 81(2) (2021), pp. 718–740.
  • X. Zheng, D. Zhang, Y. Li, C. Yang, Y. Wu, X. Liang, Y. Liang, X. Pan, L. Hu, Q. Sun, X. Wang, Y. Wei, J. Zhu, W. Qian, Z. Yan, A. G. Parker, J.R.L. Gilles, K. Bourtzis, J. Bouyer, M. Tang, B. Zheng, J. Yu, J. Liu, J. Zhuang, Z. Hu, M. Zhang, J.-T. Gong, X.-Y. Hong, Z. Zhang, L. Lin, Q. Liu, Z. Hu, Z. Wu, L.A. Baton, A.A. Hoffmann, and Z. Xi, Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature 572 (2019), pp. 56–61.
  • Z. Zhu, B. Zheng, Y. Shi, R. Yan, and J. Yu, Stability and periodicity in a mosquito population suppression model composed of two sub-models, Nonlinear. Dyn. 107(1) (2021), pp. 1383–1395.