1,111
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Analysis of HIV latent infection model with multiple infection stages and different drug classes

ORCID Icon, &
Pages 713-732 | Received 17 Nov 2021, Accepted 09 Aug 2022, Published online: 20 Oct 2022

References

  • K.W. Ahn and M.J. Root, Complex interplay of kinetic factors governs the synergistic properties of HIV-1 entry inhibitors, J. Biol. Chem. 292 (40) (2017), pp. 16498–16510.
  • A. Alshorman, C. Samarasinghe, W. Lu, and L. Rong, An HIV model with age-structured latently infected cells, J. Biol. Dyn. 11 (sup1) (2017), pp. 192–215.
  • A. Alshorman, X. Wang, M.J. Meyer, and L. Rong, Analysis of HIV models with two time delays, J. Biol. Dyn. 11 (sup1) (2017), pp. 40–64.
  • Antiretroviral Therapy Cohort Collaboration, Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies, Lancet HIV. 4 (8) (2017), pp. e349–e356.
  • S. Ávila-Ríos, C. García-Morales, M. Matías-Florentino, K.A. Romero-Mora, and D. Tapia-Trejo, et al. Pretreatment HIV-drug resistance in Mexico and its impact on the effectiveness of first-line antiretroviral therapy: a nationally representative 2015 WHO survey, Lancet HIV. 3 (12) (2016), pp. e579–e591.
  • G. Barbaro, A. Scozzafava, A. Mastrolorenzo, and C.T. Supuran, Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome, Curr. Pharm. Des. 11 (14) (2005), pp. 1805–1843.
  • B.R. Bavinton, A.N. Pinto, N. Phanuphak, B. Grinsztejn, and G.P. Prestage, et al. Viral suppression and HIV transmission in serodiscordant male couples: an international, prospective, observational, cohort study, Lancet HIV. 5 (8) (2018), pp. e438–e447.
  • J.N. Blankson, D. Persaud, and R.F. Siliciano, The challenge of viral reservoirs in HIV-1 infection, Annu. Rev. Med. 53 (1) (2002), pp. 557–593.
  • D. Boden, A. Hurley, L. Zhang, Y. Cao, and Y. Guo, et al. HIV-1 drug resistance in newly infected individuals, JAMA 282 (12) (1999), pp. 1135–41.
  • V. Briz, E. Poveda, and V. Soriano, HIV entry inhibitors: mechanisms of action and resistance pathways, J. Antimicrob. Chemother. 57 (4) (2006), pp. 619–627.
  • X. Cao, F.A. Basir, X. Li, and P.K. Roy, Impact of combined therapy in HIV-1 treatment: A double impulsive approach, Int. J. Appl. Comput. Math. 6 (2020), pp. 106.
  • A. Castagna, P. Biswas, A. Beretta, and A. Lazzarin, The appealing story of HIV entry inhibitors, CNS Drugs. 65 (7) (2005), pp. 879–904.
  • N. Chomont, M. El-Far, P. Ancuta, L. Trautmann, and F.A. Procopio, et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat. Med. 15 (8) (2009), pp. 893–900.
  • S. Chowdhury, P.K. Roy, and R.J. Smith, Mathematical modelling of enfuvirtide and protease inhibitors as combination therapy for HIV, Int. J. Nonlinear Sci. Numer. Simul. 17 (6) (2016), pp. 259–275.
  • T.W. Chun, L. Carruth, D. Finzi, X. Shen, and J.A. DiGiuseppe, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection, Nature. 387 (6629) (1997), pp. 183–188.
  • M.S. Cohen, Y.Q. Chen, M. McCauley, T. Gamble, and M.C. Hosseinipour, et al. Antiretroviral therapy for the prevention of HIV-1 transmission, N. Engl. J. Med. 375 (9) (2016), pp. 830–839.
  • F. Curreli, Y.D. Kwon, D.S. Belov, R.R. Ramesh, and A.V. Kurkin, et al. Synthesis, antiviral potency, in vitro ADMET, and X-ray structure of potent CD4 mimics as entry inhibitors that target the Phe43 cavity of HIV-1gp120, J. Med. Chem. 60 (7) (2017), pp. 3124–3153.
  • F. Curreli, D.S. Belov, Y.D. Kwon, R. Ramesh, and A.M. Furimsky, et al. Structure-based lead optimization to improve antiviral potency and ADMET properties of phenyl-1H-pyrrole-carboxamide entry inhibitors targeted to HIV-1 gp120, Eur. J. Med. Chem. 154 (2018), pp. 367–391.
  • O. Diekmann, J.A.P. Heesterbeek, and J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol.28 (4) (1990), pp. 365–382.
  • J.B. Dinoso, S.Y. Kim, A.M. Wiegand, S.E. Palmer, and S.J. Gange, et al. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy, PNAS 106 (23) (2009), pp. 9403–9408.
  • D.A. Donahue, R.D. Sloan, B.D. Kuhl, T. Bar-Magen, and S.M. Schader, et al. Stage-dependent inhibition of HIV-1 replication by antiretroviral drugs in cell culture, Antimicrob. Agents Chemother.54 (3) (2010), pp. 1047–1054.
  • X. Fengyan, P.A. Edward, L. Liyu, H. Yingchun, and Y. Juan, et al. Current status of the pharmacokinetics and pharmacodynamics of HIV-1 entry inhibitors and HIV therapy, Curr. Drug Metab. 18 (8) (2017), pp. 769–781.
  • D. Finzi, M. Hermankova, T. Pierson, L.M. Carruth, and C. BUCK, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy, Sciences. 278 (1997), pp. 1295–1300.
  • J.B. Gilmore, A.D. Kelleher, D.A. Cooper, and J.M. Murray, Explaining the determinants of first phase HIV decay dynamics through the effects of stage-dependent drug action, PLoS Comput. Biol. 9 (3) (2013), pp. e1002971.
  • W.C. Greene, The brightening future of HIV therapeutics, Nat. Immunol. 5 (9) (2004), pp. 867–871.
  • R.M. Gulick, New antiretroviral drugs, Clin. Microbiol. Infect. 9 (3) (2003), pp. 186–193.
  • R.M. Gulick, A. Meibohm, D. Havlir, J.J. Eron, and A. Mosley, et al. Six-year follow-up of HIV-1-infected adults in a clinical trial of antiretroviral therapy with indinavir, zidovudine, and lamivudine, AIDS. 17 (16) (2003), pp. 2345–2349.
  • T. Guol, Z. Qiu, M. Shen, and L. Rong, Dynamics of a new HIV model with the activation status of infected cells, J. Math. Biol. 82 (6) (2021), pp. 51.
  • S.M. Hammer and L. Pedneault, Antiretroviral resistance testing comes of age, Antivir. Ther. 5 (1) (2000), pp. 23–26.
  • H. Hatano, R. Scherzer, Y. Wu, K. Harvill, and K. Maka, et al. A randomized controlled trial assessing the effects of raltegravir intensification on endothelial function in treated HIV infection, J. Acquir. Immune Defic. Syndr. 61 (3) (2012), pp. 317–325.
  • T.D. Hollingsworth, R.M Anderson, and C. Fraser, HIV-1 transmission, by stage of infection, J. Infect. Dis. 198 (5) (2008), pp. 687–693.
  • J.M. Hyman, J. Li, and E.A. Stanley, The differential infectivity and staged progression models for the transmission of HIV, Math. Biosci. 155 (2) (1999), pp. 77–109.
  • J.M. Hyman and J. Li, The reproductive number for an HIV model with differential infectivity and staged progression, Linear Algebra Its Appl. 398 (2005), pp. 101–116.
  • M.O. Ilomuanya, A.T. Hameedat, E.N. Akang, S.O. Ekama, and B.O. Silva, et al. Development and evaluation of mucoadhesive bigel containing tenofovir and maraviroc for HIV prophylaxis, Future J. Pharm. Sci. 6 (1) (2020), pp. 81.
  • M.C. Jamjian and I.R. McNicholl, Enfuvirtide: first fusion inhibitor for treatment of HIV infection, Am. J. Health Syst. Pharm. 61 (12) (2004), pp. 1242–1247.
  • Jmarchn, HIV-Wikipedia [Internet]. Available at https://en.wikipedia.org/wiki/HIV.
  • J.M. Kilby and J.J. Eron, Novel therapies based on mechanisms of HIV-1 cell entry, N. Engl. J. Med.348 (22) (2003), pp. 2228–2238.
  • H. Kim and A.S. Perelson, Viral and latent reservoir persistence in HIV-1-Infected patients on therapy, PLoS Comput. Biol. 2 (10) (2006), pp. e135. pp. 1232–1247.
  • M. v. Kleist, S. Menz, and W. Huisinga, Drug-class specific impact of antivirals on the reproductive capacity of HIV, PLoS Comput. Biol. 6 (3) (2010), pp. e1000720.
  • J.P. Lalezari, K. Henry, M. O'Hearn, J.S.G. Montaner, and P.J. Piliero, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for Drug-Resistant HIV infection in north and South America, N. Engl. J. Med. 348 (22) (2003), pp. 2175–2185.
  • A. Lazzarin, B. Clotet, D. Cooper, J. Reynes, and K. Arastéh, et al. Efficacy of enfuvirtide in patients infected with drugresistant HIV-1 in Europe and Australia, N. Engl. J. Med. 348 (22) (2003), pp. 2186–2195.
  • W. Li, L. Lu, W. Li, and S. Jiang, Small-molecule HIV-1 entry inhibitors targeting gp120 and gp41: a patent review (2010-2015), Expert. Opin. Ther. Pat. 27 (6) (2017), pp. 707–719.
  • H. Liu and J. Zhang, Dynamics of two time delays differential equation model to HIV latent infection, Phys. A. Stat. Mech. Appl. 514 (2019), pp. 384–395.
  • J. Llibre, M. Buzon, M. Massanella, A. Esteve, and V. Dahl, et al. Treatment intensification with raltegravir in subjects with sustained HIV-1 viraemia suppression: a randomized 48-week study, Antivir. Ther. 17 (2) (2012), pp. 355–364.
  • A.L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: limitations of studies of viral load data, Proc. Biol. Sci. 268 (1469) (2001), pp. 847–854.
  • J. Lou and R. J.Smith, Modelling the effects of adherence to the HIV fusion inhibitor enfuvirtide, J. Theor. Biol. 268 (1) (2011), pp. 1–13.
  • L. Lu, P. Tong, X. Yu, C. Pan, and P. Zou, et al. HIV-1 variants with a single-point mutation in the gp41 pocket region exhibiting different susceptibility to HIV fusion inhibitors with pocket- or membrane-binding domain, Biochim. Biophys. Acta. 1818 (12) (2012), pp. 2950–2957.
  • G. Magombedze, W. Garira, and E. Mwenje, Modelling the immunopathogenesis of HIV-1 infection and the effect of multidrug therapy: the role of fusion inhibitors in HAART, Math. Biosci. Eng. 5 (3) (2008), pp. 485–504.
  • M.H. Markowitz, B.Y. Nguyen, E. Gotuzzo, F.A. Mendo, and W. Ratanasuwan, et al. Rapid and durable antiretroviral effect of the HIV-1 integrase inhibitor raltegravir as part of combination therapy in treatment-naive patients with HIV-1 infection, J. Acquir. Immune Defic. Syndr. 46 (2) (2007), pp. 125–133.
  • K. Marks and R.M. Gulick, New antiretroviral agents for the treatment of HIV infection, Curr. Infect. Dis. Rep. 6 (4) (2004), pp. 333–339.
  • D. McMahon, J. Jones, A. Wiegand, S.J. Gange, and M. Kearney, et al. Short-course raltegravir intensification does not reduce persistent low-level viremia in patients with HIV-1 suppression during receipt of combination antiretroviral therapy, Clin. Infect. Dis. 50(6) (2000), pp. 912–919.
  • G.B. Melikyan, How entry inhibitors synergize to fight HIV, J. Biol. Chem. 292 (40) (2017), pp. 16511–16512.
  • M.U. Mirza, A. Saadabadi, M. Vanmeert, O.M.H. Salo-Ahen, and I. Abdullah, et al. Discovery of HIV entry inhibitors via a hybrid CXCR4 and CCR5 receptor pharmacophore-based virtual screening approach, Eur. J. Pharm. Sci. 162 (2021), pp. 105827.
  • T. Mizuguchi, S. Harada, T. Miura, N. Ohashi, and T. Narumi, et al. A minimally cytotoxic CD4 mimic as an HIV entry inhibitor, Bioorg. Med. Chem. Lett. 26 (2) (2016), pp. 397–400.
  • J.P. Moore and R.W. Doms, The entry of entry inhibitors: a fusion of science and medicine, Proc. Natl. Acad. Sci. USA. 100 (19) (2003), pp. 10598–10602.
  • J.M. Murray, S. Emery, A.D. Kelleher, M. Law, and J. Chen, et al. Antiretroviral therapy with the integrase inhibitor raltegravir alters decay kinetics of HIV, significantly reducing the second phase, AIDS. 21 (17) (2007), pp. 2315–2321.
  • J.M. Murray, A.D. Kelleher, and D.A. Cooper, Timing of the components of the HIV life cycle in productively infected CD 4+ T cells in a population of HIV-Infected individuals, J. Virol. 85 (20) (2011), pp. 10798–10805.
  • G.P. Pattnaik and H. Chakraborty, Entry Inhibitors: Efficient means to block viral infection, J. Membr. Biol. 253 (5) (2020), pp. 425–444.
  • K.A. Pawelek, S. Liu, F. Pahlevani, and L. Rong, A model of HIV-1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci. 235 (1) (2012), pp. 98–109.
  • A.S. Perelson and P.W. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41 (1) (1999), pp. 3–44.
  • A.S. Perelson, D.E. Kirschner, and R.D. Boer, Dynamics of HIV infection of CD 4+ T cells, Math. Biosci.114 (1) (1993), pp. 81–125.
  • H.H. Pharm and P.R. Skolnik, Enfuvirtide, a new fusion inhibitor for therapy of human immunodeficiency virus infection, Am. Coll. Clin. Pharm. 24(2) (2012), pp. 198–211.
  • J. Pu, Q. Wang, W. Xu, L. Lu, and S. Jiang, Development of protein-and peptide-based HIV entry inhibitors targeting gp120 or gp41, Viruses 11 (8) (2019), pp. 705.
  • K. Qian, S.L. Morris-Natschke, and K. Lee, HIV entry inhibitors and their potential in HIV therapy, Med. Res. Rev. 29 (2) (2009), pp. 369–393.
  • T.M. Rad, L. Saghaie, and A. Fassihi, HIV-1 entry inhibitors: A review of experimental and computational studies, Chem. Biodivers. 15 (10) (2018), pp. e1800159.
  • B. Ramratnam, S. Bonhoeffer, J. Binley, A. Hurley, and L. Zhang, et al. Rapid production and clearance of HIV-1 andhepatitis C virus assessed by large volume plasma apheresis, Lancet. 354 (9192) (1999), pp. 1782–1785.
  • B. Ramratnam, J.E. Mittler, L. Zhang, D. Boden, and A. Hurley, et al. The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy, Nat. Med. 6 (1) (2000), pp. 82–85.
  • W.C. Roda, S. Liu, C. Power, and M.Y. Li, Modeling the effects of latency reversing drugs during HIV-1 and SIV brain infection with implications for the shock and kill strategy, Bull. Math. Biol. 83 (4) (2021), pp. 39.
  • A.J. Rodger, V. Cambiano, T. Bruun, P. Vernazza, and S. Collins, et al. Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-Positive partner is using suppressive antiretroviral therapy, JAMA. 316 (2) (2016), pp. 171–181.
  • A.J. Rodger, V. Cambiano, T. Bruun, P. Vernazza, and S. Collins, et al. Risk of HIV transmission through condomless sex in serodifferent gay couples with the HIV-positive partner taking suppressive antiretroviral therapy (PARTNER): final results of a multicentre, prospective, observational study, Lancet. 393 (10189) (2019), pp. 2428–2438.
  • L. Rong and A.S. Perelson, Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol. 5 (10) (2009a), pp. e1000533. pp. 1–18.
  • L. Rong and A.S. Perelson, Modeling HIV persistence, the latent reservoir, and viral blips, J. Theor. Biol. 260 (2) (2009b), pp. 308–331.
  • L. Rong and A.S. Perelson, Modeling latently infected cell activation: Viral and latent reservoir persistence, and viral blips in HIV-infected patients on potent therapy, PLoS Comput. Biol. 5 (10) (2009c), pp. e1000533.
  • L. Rong and A.S. Perelson, Asymmetric division of activated latently infected cells may explain the decay kinetics of the HIV-1 latent reservoir and intermittent viral blips, Math. Biosci. 217 (1) (2009d), pp. 77–87.
  • L. Rong, Z. Feng, and A.S. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol. 69 (6) (2007), pp. 2027–2060.
  • A.R. Sedaghat, J.B. Dinoso, L. Shen, C.O. Wilke, and R.F. Siliciano, Decay dynamics of HIV-1 depend on the inhibited stages of the viral life cycle, Proc. Natl. Acad. Sci. USA. 105 (12) (2008), pp. 4832–4837.
  • A.R. Sedaghat, R.F. Siliciano, and C.O. Wilke, Constraints on the dominant mechanism for HIV viral dynamics in patients on raltegravir, Antivir. Ther. 14 (2) (2009), pp. 263–271.
  • S. Sepehri, S. Soleymani, R. Zabihollahi, M.R. Aghasadeghi, and M. Sadat, et al. Synthesis, biological evaluation and molecular docking studies of novel 4-[4-Arylpyridin-1(4H)-yl]benzoic acid derivatives as anti-HIV-1 agents, Chem. Biodivers. 14 (12) (2017), pp. e1700295.
  • R.J. Smith and B.D. Aggarwala, Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?, J. Math. Biol. 59 (5) (2009), pp. 697–715.
  • B. Song, J. Lou, and Q. Wen, Modelling two different therapy strategies for drug T-20 on HIV-1 patients, Appl. Math. Mech. Engl. Ed. 32 (4) (2011), pp. 419–436.
  • N.E. Tarfulea, A mathematical model for CTL effect on a latently infected cell inclusive HIV dynamics and treatment, AIP. Conf. Proc. 1895(1) (2017), pp. 070005.
  • J.C. Tilton and R.W. Doms, Entry inhibitors in the treatment of HIV-1 infection, Antiviral Res. 85 (1) (2010), pp. 91–100.
  • N.K. Vaidya and L. Rong, Modeling pharmacodynamics on HIV latent infection: choice of drugs is key to successful cure via early therapy, SIAM J. Appl. Math. 77 (5) (2017), pp. 1781–1804.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (1-2) (2002), pp. 29–48.
  • X. Wang, X. Song, S. Tang, and L. Rong, Dynamics of an HIV model with multiple infection stages and treatment with different drug classes, Bull. Math. Biol. 78 (2016), pp. 323–349.
  • X. Wang, G. Mink, D. Lin, X. Song, and L. Rong, Influence of raltegravir intensification on viral load and 2-LTR dynamics in HIV patients on suppressive antiretroviral therapy, J. Theor. Biol. 416 (2017), pp. 16–27.
  • X. Wang, S. Tang, X. Song, and L. Rong, Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission, J. Biol. Dyn. 11 (sup2) (2017), pp. 455–483.
  • M.J. Wawer, R.H. Gray, N.K. Sewankambo, D. Serwadda, and X. Li, et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda, J. Infect Dis. 191 (9) (2005), pp. 1403–1409.
  • S.A. Wegner, S.K. Brodine, J.R. Mascola, S.A. Tasker, and R.A. Shaffer, et al. Prevalence of genotypic and phenotypic resistance to anti-retroviral drugs in a cohort of therapy-naïve HIV-1 infected US military personnel, AIDS. 14 (8) (2000), pp. 1009–1015.
  • B.D. Welch, J.N. Francis, J.S. Redman, S. Paul, and M.T. Weinstock, et al. Design of a potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance, J. Virol. 84 (21) (2010), pp. 11235–11244.
  • C.B. Wilen, J.C. Tilton, and R.W. Doms, HIV: cell binding and entry, Cold Spring Harb. Perspect. Med. 2(8) (2012), pp. a006866.
  • D. Wodarz and M.A. Nowak, Mathematical models of HIV pathogenesis and treatment, BioEssays.24 (12) (2002), pp. 1178–1187.
  • J.K. Wong, M. Hezareh, H.F. Günthard, D.V. Havlir, and C.C. Ignacio, et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia, Sciences. 278(5341) (1997), pp. 1291–5.
  • H. Zhang, D. Kang, B. Huang, N. Liu, and F. Zhao, et al. Discovery of non-peptide small molecular CXCR4 antagonists as anti-HIV-1 agents: recent advances and future opportunities, Eur. J. Med. Chem. 114 (2016), pp. 65–78.