769
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimal reduced-mixing for an SIS infectious-disease model

&
Pages 746-765 | Received 24 Feb 2022, Accepted 12 Nov 2022, Published online: 22 Nov 2022

References

  • N.T.J. Bailey, The Mathematical Theory of Epidemics, Charles Griffin and Co. Ltd., London, 1957.
  • R.E. Baker, A.S. Mahmud, I.F.M.M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, L.F. Wang, A. Wesolowski, and C.J.E. Metcalf, Infectious disease in an era of global change, Nat. Rev. Microbiol. 20 (2021), pp. 193–205.
  • N.G. Becker, Modeling to Inform Infectious Disease Control, Chapman and Hall/CRC, Boca Raton, 2015.
  • J. Bedford, J. Farrar, C. Ihekweazu, G. Kang, M. Koopmans, and J. Nkengasong, A new twenty-first century science for effective epidemic response, Nature 575 (2019), pp. 130–136.
  • P. Beutels, N. Jia, Q.Y. Zhou, R. Smith, W.C. Cao, and S.J. de Vlas, The economic impact of SARS in Beijing, China, Trop. Med. Int. Health. 14 (2009), pp. 85–91.
  • P.A. Bliman and M. Duprez, How best can finite-time social distancing reduce epidemic final size? J. Theoret. Biol. 511 (2021), p. 110557.
  • L. Bolzoni, E. Bonacini, C. Soresina, and M. Groppi, Time-optimal control strategies in SIR epidemic models, Math. Biosci. 292 (2017), pp. 86–96.
  • M.L. Brandeau, Allocating resources to control infectious diseases, in Operations Research and Health Care, International Series in Operations Research and Management Science, Vol. 70, M.L. Brandeau, F. Sainfort, and W.P. Pierskalla, eds., Chap. 17, Springer, Boston, MA, 2005, pp. 443–464.
  • F. Brauer, C. Castillo-Chavez, and Z. Feng, Mathematical Models in Epidemiology, Springer, New York, 2019.
  • N.F. Britton, Essential Mathematical Biology, Springer, London, 2003.
  • E.H. Bussell, C.E. Dangerfield, C.A. Gilligan, and N.J. Cunniffe, Applying optimal control theory to complex epidemiological models to inform real-world disease management, Philos. Trans. Roy. Soc. B 374 (2019), p. 20180284.
  • C. Castillo-Chavez, W. Huang, and J. Li, Competitive exclusion in gonorrhea models and other sexually transmitted diseases, SIAM J. Appl. Math. 56 (1996), pp. 494–508.
  • W.N. Cheng and S.G. Han, Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments – a review, Asian-Australas. J. Anim. Sci. 33 (2020), pp. 1699–1713.
  • P.G. Coen, A.G. Luckins, H.C. Davison, and M.E.J. Woolhouse, Trypanosoma evansi in Indonesian buffaloes: evaluation of simple models of natural immunity to infection, Epidemiol. Infect. 126 (2001), pp. 111–118.
  • P. Corredor-Moreno and D.G.O. Saunders, Expecting the unexpected: factors influencing the emergence of fungal and oomycete plant pathogens, New Phytol. 225 (2020), pp. 118–125.
  • N.J. Cunniffe, F.F. Laranjeira, F.M. Neri, R.E. DeSimone, and C.A. Gilligan, Cost-effective control of plant disease when epidemiological knowledge is incomplete: modelling Bahia bark scaling of citrus, PLOS Comput. Biol. 10 (2014), p. e1003753.
  • V.G. da Costa, M.L. Moreli, and M.V. Saivish, The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century, Arch. Virol. 165 (2020), pp. 1517–1526.
  • D.J. Daley and J. Gani, Epidemic Modelling: An Introduction, Cambridge University Press, Cambridge, 1999.
  • L.K. Dixon, H. Sun, and H. Roberts, African swine fever, Antiviral Res. 165 (2019), pp. 34–41.
  • B.C. Fabien, Dsoa: the implementation of a dynamic system optimization algorithm, Optimal Control Appl. Methods 31 (2010), pp. 231–247.
  • E.P. Fenichel, C. Castillo-Chavez, M.G. Ceddia, G. Chowell, P.A.G. Parra, G.J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, M. Springborn, L. Velazquez, and C. Villalobos, Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci. USA 108 (2011), pp. 6306–6311.
  • H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng. 6 (2009), pp. 469–492.
  • M. Gambhir, M.G. Basáñez, M.J. Burton, A.W. Solomon, R.L. Bailey, M.J. Holland, I.M.Blake, C.A. Donnelly, I. Jabr, D.C. Mabey, and N.C. Grassly, The development of an age-structured model for trachoma transmission dynamics, pathogenesis and control, PLoS Negl. Trop. Dis. 3 (2009), p. e462.
  • J. González-Guzmán, An epidemiological model for direct and indirect transmission of typhoid fever, Math. Biosci. 96 (1989), pp. 33–46.
  • T. Halasa, K. Huijps, O. Østerås, and H. Hogeveen, Economic effects of bovine mastitis and mastitis management: a review, Vet. Q. 29 (2007), pp. 18–31.
  • S.E. Heath, The impact of epizootics on livelihoods, J. Appl. Anim. Welf. Sci. 11 (2008), pp. 98–111.
  • H.W. Hethcote, Three basic epidemiological models, in Applied Mathematical Ecology, S.A. Levin, T.G. Hallam, and L.J. Gross, eds., Springer, Berlin, Heidelberg, 1989, pp. 119–144.
  • H. Hethcote and J. Yorke, Gonorrhea transmission dynamics and control, Lect. Notes Biomath. 56 (1984), pp. 18–24.
  • C.R.R. Hooks and A. Fereres, Protecting crops from non-persistently aphid-transmitted viruses: a review on the use of barrier plants as a management tool, Virus Res. 120 (2006), pp. 1–16.
  • A.D. James and J. Rushton, The economics of foot and mouth disease, Rev. Sci. Tech. 21 (2002), pp. 637–644.
  • K.E. Jones, N.G. Patel, M.A. Levy, A. Storeygard, D. Balk, J.L. Gittleman, and P. Daszak, Global trends in emerging infectious diseases, Nature 451 (2008), pp. 990–993.
  • R.A.C. Jones, Using epidemiological information to develop effective integrated virus disease management strategies, Virus Res. 100 (2004), pp. 5–30.
  • S. Kalra, D. Kelkar, S.C. Galwankar, T.J. Papadimos, S.P. Stawicki, B. Arquilla, B.A. Hoey, R.P.Sharpe, D. Sabol, and J.A. Jahre, The emergence of ebola as a global health security threat: from ‘lessons learned’ to coordinated multilateral containment efforts, J. Glob. Infect. Dis. 6 (2014), pp. 164–177.
  • M.J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, 2008.
  • W.O. Kermack and A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A 115 (1927), pp. 700–721.
  • C. Klap, N. Luria, E. Smith, E. Bakelman, E. Belausov, O. Laskar, O. Lachman, A. Gal-On, and A.Dombrovsky, The potential risk of plant-virus disease initiation by infected tomatoes, Plants 9 (2020), p. 623.
  • T.J.D. Knight-Jones and J. Rushton, The economic impacts of foot and mouth disease – what are they, how big are they and where do they occur? Prev. Vet. Med. 112 (2013), pp. 161–173.
  • S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, Boca Raton, 2007.
  • F. Lin, K. Muthuraman, and M. Lawley, An optimal control theory approach to non-pharmaceutical interventions, BMC Infect. Dis. 10 (2010), pp. 32.
  • R. Mazzucco, U. Dieckmann, and J.A.J. Metz, Epidemiological, evolutionary, and economic determinants of eradication tails, J. Theoret. Biol. 405 (2016), pp. 58–65.
  • G. Neumann, T. Noda, and Y. Kawaoka, Emergence and pandemic potential of swine-origin H1N1 influenza virus, Nature 459 (2009), pp. 931–939.
  • C. Offen and S. Ober-Blöbaum, Bifurcation preserving discretisations of optimal control problems, IFAC-PapersOnLine 54 (2021), pp. 334–339.
  • T.C. Pierson and M.S. Diamond, The emergence of Zika virus and its new clinical syndromes, Nature 560 (2018), pp. 573–581.
  • L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962.
  • J.D. Porter and K.P. McAdam, The re-emergence of tuberculosis, Annu. Rev. Public Health 15 (1994), pp. 303–323.
  • W.J.M. Probert, K. Shea, C.J. Fonnesbeck, M.C. Runge, T.E. Carpenter, S. Dürr, M.G. Garner, N.Harvey, M.A. Stevenson, C.T. Webb, M. Werkman, M.J. Tildesley, and M.J. Ferrari, Decision-making for foot-and-mouth disease control: objectives matter, Epidemics 15 (2016), pp. 10–19.
  • S. Pyörälä, Treatment of mastitis during lactation, Ir. Vet. J. 62 (2009), p. 40.
  • J.B. Ristaino, P.K. Anderson, D.P. Bebber, K.A. Brauman, N.J. Cunniffe, N.V. Fedoroff, C. Finegold, K.A. Garrett, C.A. Gilligan, C.M. Jones, M.D. Martin, G.K. MacDonald, P. Neenan, A. Records, D.G.Schmale, L. Tateosian, and Q. Wei, The persistent threat of emerging plant disease pandemics to global food security, Proc. Natl. Acad. Sci. USA 118 (2021), p. e2022239118.
  • E. Rollin, K.C. Dhuyvetter, and M.W. Overton, The cost of clinical mastitis in the first 30 days of lactation: an economic modeling tool, Prev. Vet. Med. 122 (2015), pp. 257–264.
  • J. Rushton, P.K. Thornton, and M.J. Otte, Methods of economic impact assessment, Rev. Sci. Tech.18 (1999), pp. 315–342.
  • S. Saha, G.P. Samanta, and J.J. Nieto, Epidemic model of COVID-19 outbreak by inducing behavioural response in population, Nonlinear Dyn. 102 (2020), pp. 455–487.
  • S. Saha, G.P. Samanta, and J.J. Nieto, Impact of optimal vaccination and social distancing on COVID-19 pandemic, Math. Comput. Simul. 200 (2022), pp. 285–314.
  • K. Schneider, W. van der Werf, M. Cendoya, M. Mourits, J.A. Navas-Cortés, A. Vicent, and A.O.Lansink, Impact of Xylella fastidiosa subspecies pauca in European olives, Proc. Natl. Acad. Sci. USA117 (2020), pp. 9250–9259.
  • S.Y. Serovaiskii, Counterexamples in Optimal Control Theory, De Gruyter, Berlin, Boston, 2011.
  • S.P. Sethi, Optimal quarantine programmes for controlling an epidemic spread, J. Oper. Res. Soc. 29 (1978), pp. 265–268.
  • S. Sharma, A. Mondal, A.K. Pal, and G.P. Samanta, Stability analysis and optimal control of avian influenza virus a with time delays, Int. J. Dyn. Control 6 (2018), pp. 1351–1366.
  • S. Sharma and G.P. Samanta, Analysis of a chlamydia epidemic model, J. Biol. Syst. 22 (2014), pp. 713–744.
  • O. Sharomi and T. Malik, Optimal control in epidemiology, Ann. Oper. Res. 251 (2017), pp. 55–71.
  • E. Shim, Optimal strategies of social distancing and vaccination against seasonal influenza, Math. Biosci. Eng. 10 (2013), pp. 1615–1634.
  • K.F. Smith, M. Goldberg, S. Rosenthal, L. Carlson, J. Chen, C. Chen, and S. Ramachandran, Global rise in human infectious disease outbreaks, J. R. Soc. Interface 11 (2014), p. 20140950.
  • P.J. Sánchez-Cordón, M. Montoya, A.L. Reis, and L.K. Dixon, African swine fever: a re-emerging viral disease threatening the global pig industry, Vet. J. 233 (2018), pp. 41–48.
  • F.M. Tomley and M.W. Shirley, Livestock infectious diseases and zoonoses, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364 (2009), pp. 2637–2642.
  • B.H. van den Borne, H.U. Graber, V. Voelk, C. Sartori, A. Steiner, M.C. Haerdi-Landerer, and M.Bodmer, A longitudinal study on transmission of staphylococcus aureus genotype B in Swiss communal dairy herds, Prev. Vet. Med. 136 (2017), pp. 65–68.
  • R.A. Weiss and A.J. McMichael, Social and environmental risk factors in the emergence of infectious diseases, Nat. Med. 10 (2004), pp. S70–6.
  • K. Wickwire, Mathematical models for the control of pests and infectious diseases: a survey, Theor. Popul. Biol. 11 (1977), pp. 182–238.
  • D.J. Wilson, R.N. Gonzalez, and P.M. Sears, Segregation or use of separate milking units for cows infected with staphylococcus aureus: effects on prevalence of infection and bulk tank somatic cell count, J. Dairy Sci. 78 (1995), pp. 2083–2085.
  • S. Zhang, J.S. Griffiths, G. Marchand, M.A. Bernards, and A. Wang, Tomato brown rugose fruit virus: an emerging and rapidly spreading plant RNA virus that threatens tomato production worldwide, Mol. Plant Pathol. 23 (2022), pp. 1262–1277.