2,192
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Optimal control and cost-effectiveness analysis of age-structured malaria model with asymptomatic carrier and temperature variability

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2199766 | Received 04 May 2022, Accepted 31 Mar 2023, Published online: 13 Apr 2023

References

  • G.J. Abiodun, P.J. Witbooi, K.O. Okosun, and R. Maharaj, Exploring the impact of climate variability on malaria transmission using a dynamic mosquito-human malaria model, Open Infect. Dis. J. 10(1) (2018), pp. 88–100.
  • J.M. Addawe and J.E.C. Lope, Sensitivity analysis of the age-structured malaria transmission model, AIP Conf. Proc. 1482(1) (2012), pp. 47–53. doi:10.1063/1.4757436
  • J.M. Addawe and A.K. Pajimola, Dynamics of climate-based malaria transmission model with the age-structured human population, AIP. Conf. Proc. 1782(1) (2016), pp. 040002. doi:10.1063/1.4966069
  • F.B. Agusto, Optimal control and temperature variations of malaria transmission dynamics, Complexity 2020 (2020), pp. 1–32.
  • F.B. Agusto, A.B. Gumel, and P.E. Parham, Qualitative assessment of the role of temperature variations on malaria transmission dynamics, J. Biol. Syst. 23(04) (2015), pp. 1550030.
  • S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, and P. Rohani, Seasonality and the dynamics of infectious diseases, Ecol. Lett. 9(4) (2006), pp. 467–484.
  • N. Chitnis , J.M. Hyman, and J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70(5) (2008), pp. 1272–1296.
  • B. Dembele, A. Friedman, and A.A. Yakubu, Malaria model with periodic mosquito birth and death rates, J. Biol. Dyn. 3(4) (2009), pp. 430–445.
  • A. Egbendewe-Mondzozo, M. Musumba, B.A. McCarl, and X. Wu, Climate change and vector-borne diseases: An economic impact analysis of malaria in Africa, Int. J. Environ. Res. Pub. He. 8(3) (2011), pp. 913–930.
  • F. Forouzannia and A.B. Gumel, Mathematical analysis of an age-structured model for malaria transmission dynamics, Math. Biosci. 247 (2014), pp. 80–94.
  • S.M. Garba and U.A. Danbaba, Modeling the effect of temperature variability on malaria control strategies, Math. Model. Nat. Phenom. 15 (2020), pp. 65.
  • A.K. Githeko, S.W. Lindsay, U.E. Confalonieri, and J.A. Patz, Climate change and vector-borne diseases: A regional analysis, Bull. World He. Organ. 78 (2000), pp. 1136–1147.
  • A. Hugo, O.D. Makinde, S. Kumar, and F.F. Chibwana, Optimal control and cost effectiveness analysis for newcastle disease eco-epidemiological model in Tanzania, J. Biol. Dyn. 11(1) (2017), pp. 190–209.
  • A.S. Kalula, E. Mureithi, T. Marijani, and I. Mbalawata, An age-structured model for transmission dynamics of malaria with infected immigrants and asymptomatic carriers, Tanz. J. Sci. 47(3) (2021), pp. 953–968.
  • J.C. Kamgang and G. Sallet, Computation of threshold conditions for epidemiological models and global stability of the disease-free equilibrium (DFE), Math. Biosci. 213(1) (2008), pp. 1–12.
  • B.J. Mafwele and J.W. Lee, Relationships between transmission of malaria in Africa and climate factors, Sci. Rep. 12(1) (2022), pp. 1–8.
  • O.D. Makinde and K.O. Okosun, Impact of chemo-therapy on optimal control of malaria with disease infected immigrants, Biol. Syst. 104 (2011), pp. 32–41.
  • M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, NewYork, 2013.
  • E.A. Mordecai, Optimal temperature for malaria transmission is dramatically lower than previously predicted, Ecol. Lett. 16(1) (2013), pp. 22–30.
  • G.G. Mwanga , H. Haario, and V. Capasso, Optimal control problems of epidemic systems with parameter uncertainties: Application to a malaria two-age-classes transmission model with asymptomatic carriers, Math. Biosci. 261 (2015), pp. 1–12.
  • E.T. Ngarakana-Gwasira, C.P. Bhunu, M. Masocha, and E. Mashonjowa, Assessing the role of climate change in malaria transmission in Africa, Malar. Res. Treat. 2016 (2016), pp. 7104291. doi:10.1155/2016/7104291
  • K.O. Okosun, O. Rachid, and N. Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, BioSystems 111(2) (2013), pp. 83–101.
  • K. Okuneye and A.B. Gumel, Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics, Math. Biosci. 287 (2017), pp. 72–92.
  • S. Olaniyi, K.O. Okosun, S.O. Adesanya, and R.S. Lebelo, Modelling malaria dynamics with partial immunity and protected travellers: Optimal control and cost-effectiveness analysis, J. Biol. Dyn. 14(1) (2020), pp. 90–115.
  • P.E. Parham and E. Michael, Modelling climate change and malaria transmission, in Model. Parasite Trans. Control 2010. pp. 184–199
  • P.E. Parham, J. Waldock, G.K. Christophides, D. Hemming, F. Agusto, K.J. Evans, N. Fefferman, H. Gaff, A. Gumel, S. LaDeau, and S. Lenhart, Climate, environmental and socio-economic change: Weighing up the balance in vector-borne disease transmission, Philos. Trans. R Soc. B Biol. Sci.370(1665) (2015), pp. 20130551.
  • R.F. Schumacher and E. Spinelli, Malaria in children, Mediterr. J. Hematol. Infect. Dis. 92 (2012), pp. 2035–3006.
  • S.Y. Tchoumi, E.Z. Dongmo, J.C. Kamgang, and J.M. Tchuenche, Dynamics of a two-group structured malaria transmission model, Inform. Med. Unlocked 29 (2022), pp. 100897.
  • P. van den Driessche and J. Watmough, Reproduction number and subthreshold endemic equilibria for compartment models of disease transmission, Math. Biosci. 180(1-2) (2002), pp. 29–48.
  • World Health Organization, World Malaria Report, 2020. Available at https://www.who.int/publications/i/item/9789240015791. Accessed on March 8, 2021.