498
Views
0
CrossRef citations to date
0
Altmetric
Special Issue in Memory of Abdul-Aziz Yakubu

Unequal effects of SARS-CoV-2 infections: model of SARS-CoV-2 dynamics in Cameroon (Sub-Saharan Africa) versus New York State (United States)

ORCID Icon &
Article: 2246496 | Received 27 Jun 2022, Accepted 05 Aug 2023, Published online: 20 Aug 2023

References

  • A. Adidja, Y. Boum, and P. Ongolo-Zogo, Cameroon: Doubt could mean vaccine doses expire, Nature 595(30) (2021), pp. 30–30. doi:10.1038/d41586-021-01784-4.
  • A.D. Algarni, A. Ben Hamed, M. Hamdi, H. Elmannai, and S. Meshoul, Mathematical COVID-19 model with vaccination: A case study in Saudi Arabia, PeerJ Comput. Sci. 8 (2022), p. e959. doi:10.7717/peerj-cs.959.
  • A. Atkeson, COVID-19: Epidemiological models, Annu. Rev. Financ. Econ. 15(1) (2023). doi:10.1146/annurev-financial-110821-020639.
  • A. Baker, Why Africa's COVID-19 outbreak hasn't been as bad as everyone feared, TIME USA, LLC, 2020. Accessed July 2, 2023. Available at https://time.com/5919241/africa-covid-19-outbreak/.
  • S. Basu, Computational characterization of inhaled droplet transport to the nasopharynx, Sci. Rep. 11 (2021), p. 6652. doi:10.1038/s41598-021-85765-7.
  • C.W. Castillo-Garsow and C. Castillo-Chavez, A tour of the basic reproductive number and the next generation of researchers, in An Introduction to Undergraduate Research in Computational and Mathematical Biology, 2020 Feb 18, pp. 87–124. doi:10.1007/978-3-030-33645-5_2.
  • Center for Disease Control and Prevention, COVID-19 overview and infection prevention and control priorities in non-U.S. healthcare settings summary of changes: ITF IPC COVID-19 overview and infection prevention and control priorities in non-U.S. healthcare settings webpage, CDC COVID-19, 2021. Accessed July 5, 2023. Available at https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/overview/index.html.
  • Center for Disease Control and Prevention, COVID-19 risks and vaccine information for older adults, 2023. Available at https://www.cdc.gov/aging/covid19/covid19-older-adults.html.
  • Centers for Disease Control and Prevention, HIV transmission, 2020. Accessed July 8, 2023. Available at https://www.cdc.gov/hiv/basics/transmission.html.
  • Center for Disease Control and Prevention, Monitoring COVID-19 cases, hospitalizations, and deaths by vaccination status: COVID-19 infection after vaccination, CDC COVID-19, 2023. Accessed July 5, 2023. Available at https://www.cdc.gov/coronavirus/2019-ncov/vaccines/effectiveness/monitoring.html.
  • Center for Disease Control and Prevention, What is COVID-19 reinfection? CDC COVID-19, 2023. Accessed July 7, 2023. Available at https://www.cdc.gov/coronavirus/2019-ncov/your-health/reinfection.html#: :text=As%20the%20virus%20evolves%2C%20new,infection%2C%20although%20this%20is%20rare.
  • Central Intelligence Agency, Cameroon, The World Factbook, 2023. Accessed July 2. Available at https://www.cia.gov/the-world-factbook/countries/cameroon/.
  • K. Choi, H. Choi, and B. Kahng, COVID-19 epidemic under the K-quarantine model: Network approach, Chaos Solitons Fract. 157 (2022), p. 111904. doi:10.1016/j.chaos.2022.111904.
  • R. Dhand and J. Li, Coughs and sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2, Am. J. Respir. Crit. Care Med. 202(5) (2020), pp. 651–659. doi:10.1164/rccm.202004-1263PP.
  • S. Drożdżal, J. Rosik, K. Lechowicz, F. Machaj, B. Szostak, J. Przybyciński, S. Lorzadeh, K. Kotfis, S. Ghavami, and M.J. Łos, An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment, Drug. Resist. Updat. 59 (2021), p. 100794. doi:10.1016/j.drup.2021.100794.
  • E.F. Fedoung, A.B. Biwole, C.F. Nyangono Biyegue, M.N. Tounkam, P.A. Ntonga, V.P. Nguiamba, D.M. Essono, P. Forbi Funwi, C. Tonga, G.M. Nguenang, and V. Kemeuze, A review of Cameroonian medicinal plants with potentials for the management of the COVID-19 pandemic, Adv. Tradit. Med. (ADTM) 26 (2021), pp. 1–26.
  • B. Hansen and N. Mygind, How often do normal persons sneeze and blow the nose? Rhinology 40(1) (2002), pp. 10–12.
  • Hiv gov (n/d), How do you get or transmit HIV?, 2022. Accessed July 8, 2023. Available at https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/how-is-hiv-transmitted.
  • V. Iranzo and S. Pérez-González, Epidemiological models and COVID-19: A comparative view, Hist. Philos. Life Sci. 43(3) (2021), p. 104. doi:10.1007/s40656-021-00457-9.
  • S. Khajanchi and K. Sarkar, Forecasting the daily and cumulative number of cases for the COVID-19 pandemic in India, Chaos 30(7) (2020), p. 071101. doi:10.1063/5.0016240.
  • S. Khajanchi, S. Bera, and T.K. Roy, Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes, Math. Comput. Simul. 180 (2021), pp. 354–378. doi:10.1016/j.matcom.2020.09.009.
  • M.E. Kindzeka, Cameroon says workers reject COVID-19 vaccines, Voice of America News, November 18, 2021. Available at https://www.voanews.com/a/cameroon-says-workers-reject-covid-19-vaccines/6318189.html.
  • D.E. Kirschner, Uncertainty and sensitivity functions and implementation, University of Michigan, 2007–2008. Available at http://malthus.micro.med.umich.edu/lab/usadata/.
  • K. Kombaté, J.N. Técléssou, B. Saka, A.S. Akakpo, K.O. Tchangai, A. Mouhari-Toure, G. Mahamadou, W. Gnassingbé, A. Abilogun-Chokki, and P. Pitché, Prevalence and factors associated with self-Medication in dermatology in Togo, Dermatol Res. Pract. 2017 (2017), p. 1–5. ID 7521831.
  • J.D. Kong, R.F. Tchuendom, S.A. Adeleye, J.F. David, F.S. Admasu, E.A. Bakare, and N. Siewe, SARS-CoV-2 and self-medication in Cameroon: A mathematical model, J. Biol. Dyn. 15(1) (2021), pp. 137–150. doi:10.1080/17513758.2021.1883130.
  • B.U. Lee, Minimum sizes of respiratory particles carrying SARS-CoV-2 and the possibility of aerosol generation, Int. J. Environ. Res. Public Health 18(22) (2021), pp. 1–8. doi:10.3390/ijerph17196960.
  • Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K.S. Leung, E.H. Lau, J.Y. Wong, and X.Xing, Early transmission dynamics in Wuhan, China, of novel coronavirus-Infected pneumonia, New Eng. J. Med. 382 (2020), pp. 1199–1207.
  • A. Liveris, M.E. Stone Jr, H. Markel, G. Agriantonis, M. Bukur, S. Melton, V. Roudnitsky, E. Chao, S.H. Reddy, S.H. Teperman, and J.A. Meltzer, When New York city was the COVID-19 pandemic epicenter: The impact on trauma care, J. Trauma. Acute Care Surg. 93(2) (2022), pp. 247–255. doi:10.1097/TA.0000000000003460.
  • S. Marino, I.B. Hogue, C.J. Ray, and D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol. 254 (2008), pp. 178–196.
  • M.J. Matson, C.K. Yinda, S.N. Seifert, T. Bushmaker, R.J. Fischer, N. van Doremalen, J.O.Lloyd-Smith, and V.J. Munster, Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum, Emerg. Infec. Dis. 26(9) (2020), pp. 2276–2278. doi:10.3201/eid2609.202267.
  • A.L. Mueller, M.S. McNamara, and D.A. Sinclair, Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 12(10) (2020), pp. 9959–9981.
  • National Oceanic and Atmospheric Administration, U.S. climate normals, National Centers for Environmental Information, 2021. Accessed December 24. Available at https://www.ncei.noaa.gov/products/land-based-stat/us-climate-normals.
  • New York State Department of Health, New York State statewide COVID-19 testing, 2021. Accessed December 22. Available at http://malthus.micro.med.umich.edu/lab/usadata/.
  • S. Nourridine, M.I. Teboh-Ewungkem, and G.A. Ngwa, A mathematical model of the population dynamics of disease-transmitting vectors with spatial consideration, J. Biol. Dyn. 5(4) (2011), pp. 335–365. doi:10.1080/17513758.2010.508540.
  • R.K. Rai, S. Khajanchi, P.K. Tiwari, E. Venturino, and A.K. Misra, Impact of social media advertisements on the transmission dynamics of COVID-19 pandemic in India, J. Appl. Math. Comput.68(1) (2022), pp. 19–44. doi:10.1007/s12190-021-01507-y.
  • S. Rewar and D. Mirdha, Transmission of Ebola virus disease: An overview, Ann. Glob. Health 80(6) (2014), pp. 444–451. doi:10.1016/j.aogh.2015.02.005.
  • H. Ritchie, E. Mathieu, L. Rodés-Guirao, C. Appel, C. Giattino, E. Ortiz-Ospina, J. Hasell, B.Macdonald, D. Beltekian, and M. Roser, Coronavirus pandemic (COVID-19), Our World in Data, 2020. Available at https://ourworldindata.org/coronavirus.
  • K. Sarkar, J. Mondal, and S. Khajanchi, How do the contaminated environment influence the transmission dynamics of COVID-19 pandemic? Eur. Phys. J. Spec. Top. 231(18–20) (2022), pp. 3697–3716. doi:10.1140/epjs/s11734-022-00648-w.
  • N. Siewe and A.A. Yakubu, Hybrid discrete-time-continuous-time models and a SARS CoV-2 mystery: Sub-Saharan Africa's low SARS CoV-2 disease burden, J. Math. Biol. 86(6) (2023), p. 91. doi:10.1007/s00285-023-01923-7.
  • N. Siewe, S. Lenhart, and A.A. Yakubu, Ebola outbreaks and international travel restrictions: Case studies of central and West Africa regions, J. Biol. Syst. 28(02) (2020), pp. 431–452. doi:10.1142/S0218339020400070.
  • V. Stadnytskyi, C.E. Bax, A. Bax, and P. Anfinrud, The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission, Proc. Nat. Ac. Sci. 117(22) (2020), pp. 11875–11877. doi:10.1073/pnas.2006874117.
  • P.K. Tiwari, R.K. Rai, S. Khajanchi, R.K. Gupta, and A.K. Misra, Dynamics of coronavirus pandemic: Effects of community awareness and global information campaigns, Eur. Phys. J. Plus 136(10) (2021), p. 994. doi:10.1140/epjp/s13360-021-01997-6.
  • S.F. Tsao, H. Chen, T. Tisseverasinghe, Y. Yang, L. Li, and Z.A. Butt, What social media told us in the time of COVID-19: A scoping review, Lancet Digit. Health 3(3) (2021), pp. e175–e194. doi:10.1016/S2589-7500(20)30315-0.
  • U S Department of Health and Human Services, COVID-19 vaccines, Assistant Secretary for Public Affairs (ASPA), 2022. Accessed July 19, 2023. Available at https://www.hhs.gov/coronavirus/covid-19-vaccines/index.html#: :text=During%20the%20COVID%2D19%20pandemic,began%20on%20December%2014%2C%202020.
  • P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model. 2(3) (2017), pp. 288–303. doi:10.1016/j.idm.2017.06.002.
  • C.I. van der Made, M.G. Netea, F.L. van der Veerdonk, and A. Hoischen, Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19, Genome. Med. 14(1) (2022), p. 96. doi:10.1186/s13073-022-01100-3.
  • J. Wang, Y.C. Chan, R. Niu, E.W.M. Wong, and M.A. van Wyk, Modeling the impact of vaccination on COVID-19 and its delta and omicron variants, Viruses 14(7) (2022), p. 1482. doi:10.3390/v14071482.
  • WHO-China, Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19), WHO382 (2020), pp. 1199–1207.
  • WMO, World Weather Information Service: Official forecast – Cameroon, World Meterological Organization, 2021. Available at www.worldweather.wmo.int.
  • World Health Organization, Coronavirus disease (COVID-19): How is it transmitted?, 2021. Accessed July 8, 2023. Available at https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19-how-is-it-transmitted.
  • Worldometer, COVID-19 corona virus pandemic, Worldometer, 2023. Accessed July 4. Available at https://www.worldometer.info/coronavirus.
  • N. Yousaf, W. Monteiro, S. Matos, S.S. Birring, and I.D. Pavord, Cough frequency in health and disease, Eur. Resp. J. 41 (2013), pp. 241–243. doi:10.1183/09031936.00089312.
  • Y. Yuan, B. Jiao, L. Qu, D. Yang, and R. Liu, The development of COVID-19 treatment, Front. Immunol. 14 (2023), p. 1125246. doi:10.3389/fimmu.2023.1125246.