951
Views
43
CrossRef citations to date
0
Altmetric
Invited Review

Oral tribology: update on the relevance to study astringency in wines

ORCID Icon & ORCID Icon
Pages 116-123 | Received 26 Apr 2017, Accepted 23 Jun 2017, Published online: 07 Jul 2017

References

  • ASTM. Standard definitions of terms relating to sensory evaluation of materials and products. Philadelphia, PA: American Society for Testing and Materials; 2004.
  • Rinaldi A, Gambuti A, Moio L. Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins. J Food Sci. 2012;77(4):C485–C490.10.1111/j.1750-3841.2012.02639.x
  • Vidal S, Courcoux P, Francis L, et al. Use of an experimental design approach for evaluation of key wine components on mouth-feel perception. Food Qual Prefer. 2004;15(3):209–217.10.1016/S0950-3293(03)00059-4
  • Guinard J-X, Pangborn RM, Lewis MJ. The time-course of astringency in wine upon repeated ingestion. Am J Enol Vitic. 1986;37(3):184–189.
  • Lyman BJ, Green BG. Oral astringency – effects of repeated exposure and interactions with sweeteners. Chem Senses. 1990;15(2):151–164.10.1093/chemse/15.2.151
  • Green BG. Oral astringency: a tactile component of flavor. Acta Physiol (Oxf). 1993;84(1):119–125.10.1016/0001-6918(93)90078-6
  • Gibbins HL, Carpenter GH. Alternative mechanisms of astringency – What is the role of saliva? J Texture Stud. 2013;44(5):364–375.10.1111/jtxs.2013.44.issue-5
  • Stokes JR, Boehm MW, Baier SK. Oral processing, texture and mouthfeel: from rheology to tribology and beyond. Curr Opin Colloid Interface Sci. 2013;18(4):349–359.10.1016/j.cocis.2013.04.010
  • Chen J, Stokes JR. Rheology and tribology: two distinctive regimes of food texture sensation. Trends Food Sci Technol. 2012;25(1):4–12.10.1016/j.tifs.2011.11.006
  • Kokini JL, Kadane JB, Cussler EL. Liquid texture perceived in the mouth. J Texture Stud. 1977;8(2):195–218.10.1111/jts.1977.8.issue-2
  • Hutchings JB, Lillford PJ. The perception of food texture – the philosophy of the breakdown path. J Texture Stud. 1988;19(2):103–115.10.1111/jts.1988.19.issue-2
  • Ranc H, Elkhyat A, Servais C, et al. Friction coefficient and wettability of oral mucosal tissue: changes induced by a salivary layer. Colloids Surf, A. 2006;276(1–3):155–161.10.1016/j.colsurfa.2005.10.033
  • Rutuja U, Natalia B, Jianshe C. Mechanisms underlying astringency: introduction to an oral tribology approach. J Phys D: Appl Phys. 2016;49(10):104003.
  • Brossard N, Cai H, Osorio F, et al. ‘Oral’ tribological study on the astringency sensation of red wines. J Texture Stud. 2016;47(5):392–402.10.1111/jtxs.2016.47.issue-5
  • Rossetti D, Bongaerts JHH, Wantling E, et al. Astringency of tea catechins: more than an oral lubrication tactile percept. Food Hydrocolloids. 2009;23(7):1984–1992.10.1016/j.foodhyd.2009.03.001
  • Ma S, Lee H, Liang Y, et al. Astringent mouthfeel as a consequence of lubrication failure. Angew Chem Int Ed. 2016;55(19):5793–5797.10.1002/anie.201601667
  • Prakash S, Tan DDY, Chen J. Applications of tribology in studying food oral processing and texture perception. Food Res Int. 2013;54(2):1627–1635.10.1016/j.foodres.2013.10.010
  • Pradal C, Stokes JR. Oral tribology: bridging the gap between physical measurements and sensory experience. Curr Opin Food Sci. 2016;9:34–41.10.1016/j.cofs.2016.04.008
  • Laguna L, Farrell G, Bryant M, et al. Relating rheology and tribology of commercial dairy colloids to sensory perception. Food Funct. 2017;8:563–573.10.1039/C6FO01010E
  • Fernández Farrés I, Norton IT. The influence of co-solutes on tribology of agar fluid gels. Food Hydrocolloids. 2015;45:186–195.10.1016/j.foodhyd.2014.11.014
  • Lee S, Heuberger M, Rousset P, et al. A tribological model for chocolate in the mouth: general implications for slurry-lubricated hard/soft sliding counterfaces. Tribol Lett. 2004;16(3):239–249.10.1023/B:TRIL.0000009735.06341.32
  • Liu K, Tian Y, Stieger M, et al. Evidence for ball-bearing mechanism of microparticulated whey protein as fat replacer in liquid and semi-solid multi-component model foods. Food Hydrocolloids. 2016;52:403–414.10.1016/j.foodhyd.2015.07.016
  • De Wijk RA, Prinz JF. Mechanisms underlying the role of friction in oral texture. J Texture Stud. 2006;37(4):413–427.10.1111/jts.2006.37.issue-4
  • Dresselhuis DM, de Hoog EHA, Cohen Stuart MA, et al. Application of oral tissue in tribological measurements in an emulsion perception context. Food Hydrocolloids. 2008;22(2):323–335.10.1016/j.foodhyd.2006.12.008
  • Asserin J, Zahouani H, Humbert P, et al. Measurement of the friction coefficient of the human skin in vivo. Colloids Surf, B. 2000;19(1):1–12.10.1016/S0927-7765(99)00169-1
  • Kullaa-Mikkonen A, Hynynen M, Hyvönen P. Filiform papillae of human, rat and swine tongue. Cells Tissues Organs. 1987;130(3):280–284.10.1159/000146457
  • Bongaerts JHH, Fourtouni K, Stokes JR. Soft-tribology: lubrication in a compliant PDMS–PDMS contact. Tribol Int. 2007;40(10–12):1531–1542.10.1016/j.triboint.2007.01.007
  • Dresselhuis DM, Klok HJ, Stuart MAC, et al. Tribology of o/w emulsions under mouth-like conditions: determinants of friction. Food Biophys. 2007;2(4):158–171.10.1007/s11483-007-9040-9
  • Ginn BT, Steinbock O. Polymer surface modification using microwave-oven-generated plasma. Langmuir. 2003;19(19):8117–8118.10.1021/la034138 h
  • Xiao D, Zhang H, Wirth M. Chemical modification of the surface of poly(dimethylsiloxane) by atom-transfer radical polymerization of acrylamide. Langmuir. 2002;18(25):9971–9976.10.1021/la0205553
  • Trantidou T, Elani Y, Parsons E, et al. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst Nanoeng. 2017;3:16091.
  • Miller JL, Watkin KL. The influence of bolus volume and viscosity on anterior lingual force during the oral stage of swallowing. Dysphagia. 1996;11(2):117–124.10.1007/BF00417901
  • Prinz JF, de Wijk RA, Huntjens L. Load dependency of the coefficient of friction of oral mucosa. Food Hydrocolloids. 2007;21(3):402–408.10.1016/j.foodhyd.2006.05.005
  • Laguna L, Hetherington MM, Chen J, et al. Measuring eating capability, liking and difficulty perception of older adults: a textural consideration. Food Qual Prefer. 2016;53:47–56.10.1016/j.foodqual.2016.05.013
  • Laguna L, Sarkar A. Influence of mixed gel structuring with different degrees of matrix inhomogeneity on oral residence time. Food Hydrocolloids. 2016;61(2):286–299.10.1016/j.foodhyd.2016.05.014
  • Laguna L, Sarkar A, Artigas G, et al. A quantitative assessment of the eating capability in the elderly individuals. Physiol Behav. 2015;147:274–281.10.1016/j.physbeh.2015.04.052
  • Laguna L, Sarkar A, Chen J. Assessment of eating capability of elderly subjects in UK: a quantitative evaluation. Proc Nutr Soc. 2015;74(OCE2):E167–E167.
  • Sarkar A, Goh KKT, Singh H. Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids. 2009;23(5):1270–1278.10.1016/j.foodhyd.2008.09.008
  • Sarkar A, Singh H. Oral behaviour of food emulsions. In: Chen J, Engelen L, editors. Food oral processing: fundamentals of eating and sensory perception. Oxford, UK: Wiley-Blackwell; 2012. DOI: 10.1002/9781444360943.ch6
  • Sarkar A, Ye A, Singh H. Oral processing of emulsion systems from a colloidal perspective. Food Funct. 2017;8(2):511–521.10.1039/C6FO01171C
  • Gibbins H, Proctor G, Yakubov G, et al. Concentration of salivary protective proteins within the bound oral mucosal pellicle. Oral Dis. 2014;20(7):707–713.10.1111/odi.12194
  • Becerra L, Soares RV, Bruno LS, et al. Patterns of secretion of mucins and non-mucin glycoproteins in human submandibular/sublingual secretion. Arch Oral Biol. 2003;48(2):147–154.10.1016/S0003-9969(02)00171-1
  • Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia. 2001;6(3):339–353.10.1023/A:1011379725811
  • Cárdenas M, Elofsson U, Lindh L. Salivary mucin MUC5B could be an important component of in vitro pellicles of human saliva? An in situ ellipsometry and atomic force microscopy study. Biomacromol. 2007;8(4):1149–1156.10.1021/bm061055 h
  • Macakova L, Yakubov GE, Plunkett MA, et al. Influence of ionic strength on the tribological properties of pre-adsorbed salivary films. Tribol Int. 2011;44(9):956–962.10.1016/j.triboint.2010.12.006
  • Morzel M, Siying T, Brignot H, et al. Immunocytological detection of salivary mucins (MUC5B) on the mucosal pellicle lining human epithelial buccal cells. Microsc Res Tech. 2014;77(6):453–457.10.1002/jemt.v77.6
  • Collins LMC, Dawes C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res. 1987;66(8):1300–1302.10.1177/00220345870660080201
  • Hahn Berg IC, Rutland MW, Arnebrant T. Lubricating properties of the initial salivary pellicle? an AFM study. Biofouling. 2003;19(6):365–369.10.1080/08927010310001618571
  • Bongaerts JHH, Rossetti D, Stokes JR. The lubricating properties of human whole saliva. Tribol Lett. 2007;27(3):277–287.10.1007/s11249-007-9232-y
  • Chen J, Engelen L. Food oral processing. Chichester: Wiley-Blackwell; 2012.10.1002/9781444360943
  • Francis CA, Hector MP, Proctor GB. Precipitation of specific proteins by freeze-thawing of human saliva. Arch Oral Biol. 2000;45(7):601–606.10.1016/S0003-9969(00)00026-1
  • Brandão E, Soares S, Mateus N, et al. Human saliva protein profile: Influence of food ingestion. Food Res Int. 2014;64:508–513.10.1016/j.foodres.2014.07.022
  • Larsen MJ, Jensen AF, Madsen DM, et al. Individual variations of pH, buffer capacity, and concentrations of calcium and phosphate in unstimulated whole saliva. Arch Oral Biol. 1999;44(2):111–117.10.1016/S0003-9969(98)00108-3
  • Prinz JF, de Wijk RA, Huntjens L. Load dependency of the coefficient of friction of oral mucosa. Food Hydrocolloids. 2007;21:402–408.10.1016/j.foodhyd.2006.05.005
  • Olsson H, Henricsson V, Axéll T. A new device for measuring oral mucosal surface friction – reference values. Eur J Oral Sci. 1991;99:329–332.10.1111/eos.1991.99.issue-4
  • Jackson RS. Table wines: sensory characteristics and sensory analysis. Cambridge, UK: Wood Head Publishing; 2012. p. 196–226.
  • Koone R, Harrington RJ, Gozzi M, et al. The role of acidity, sweetness, tannin and consumer knowledge on wine and food match perceptions. J Wine Res. 2014;25(3):158–174.10.1080/09571264.2014.899491
  • Cala O, Dufourc EJ, Fouquet E, et al. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding. Langmuir. 2012;28(50):17410–17418.10.1021/la303964 m
  • Baxter NJ, Lilley TH, Haslam E, et al. Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation?. Biochemistry. 1997;36(18):5566–5577.10.1021/bi9700328
  • Ferrer-Gallego R, Hernández-Hierro JM, Rivas-Gonzalo JC, et al. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: synergistic effect and modulation by aromas. Food Res Int. 2014;62:1100–1107.10.1016/j.foodres.2014.05.049
  • García-Ruiz A, Bartolomé B, Martínez-Rodríguez AJ, et al. Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control. 2008;19(9):835–841.10.1016/j.foodcont.2007.08.018
  • Santos-Buelga C, De Freitas V. Influence of phenolics on wine organoleptic properties. In: M.V. Moreno-Arribas & M.C. Polo, editors. Wine chemistry and biochemistry. New York: Springer; 2009. p. 529–570.
  • Haslam E. Practical polyphenol, from structure to molecular recognition and physiological action. Cambridge, UK: Cambridge University Press; 1998.
  • Laguna L, Bartolomé B, Moreno-Arribas MV. Mouthfeel perception of wine: oral physiology, components and instrumental characterization. Trends Food Sci Technol. 2017;59:49–59.10.1016/j.tifs.2016.10.011
  • Hagerman AE, Butler LG. The specificity of proanthocyanidin-protein interactions. J Biol Chem. 1981;256(9):4494–4497.
  • Prinz J, Lucas P. Saliva tannin interactions. J Oral Rehabil. 2000;27(11):991–994.10.1046/j.1365-2842.2000.00578.x
  • Rinaldi A, Gambuti A, Moio L. Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins. J Food Sci. 2012;77(4):C485–C490.10.1111/j.1750-3841.2012.02639.x
  • Poncet-Legrand C, Cartalade D, Putaux J-L, et al. Flavan-3-ol aggregation in model ethanolic solutions? Incidence of polyphenol structure, concentration, ethanol content, and ionic strength. Langmuir. 2003;19(25):10563–10572.10.1021/la034927z
  • Lubbers S, Verret C, Voilley A. The effect of glycerol on the perceived aroma of a model wine and a white wine. LWT – Food Sci Technol. 2001;34(4):262–265.10.1006/fstl.2001.0766
  • Shi Y, Minami I, Grahn M, et al. Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants. Tribol Int. 2014;69:39–45.10.1016/j.triboint.2013.08.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.