158
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The microstructure and wear behaviour of friction stir processed AISI 430 ferritic stainless steel

, , , &
Pages 172-181 | Received 24 Jan 2018, Accepted 23 Jun 2019, Published online: 11 Jul 2019

References

  • Lakshminarayanan A, Shanmugam K, Balasubramanian V. Fatigue crack growth behavior of gas metal arc welded AISI 409 grade ferritic stainless steel joints. J Mater Eng Perf. 2009;18:917–924. doi: 10.1007/s11665-008-9317-2
  • Mohandas T, Madhusudhan Reddy G, Naveed M. A comparative evaluation of gas tungsten and shielded metal arc welds of a ‘ferritic’ stainless steel. J Mater Proc Technol. 1999;94(2-3):133–140. doi: 10.1016/S0924-0136(99)00092-8
  • Teker T, Kurşun T. Weldability of AISI 430/AISI 1030 steel couples via the synergic controlled pulsed (GMAW-P) and manual gas metal arc (GMAW) welding techniques. Mater Manuf Proc. 2011;26(7):926–932. doi: 10.1080/10426914.2011.551909
  • Sarkari Khorrami M, Mostafaei MA, Pouraliakbar H, et al. Study on microstructure and mechanical characteristics of low-carbon steel and ferritic stainless steel joints. Mater Sci Eng. 2014;608(1):35–45. doi: 10.1016/j.msea.2014.04.065
  • de Mello JDB, Labiapari WS, Ardila MAN, et al. Strain hardening: can it affect abrasion resistance? Trib Lett. 2017;65(2):1–15. doi: 10.1007/s11249-017-0850-8
  • Lopes W, Corrêa ECS, Campos HB, et al. Effect of reverse and cyclic shear on the work-hardening of AISI 430 stainless steel. J Mater Sci. 2009;44(2):441–448. doi: 10.1007/s10853-008-3121-0
  • Sharma V, Prakash U, Kumar BM. Surface composites by friction stir processing: a review. J Mater Proc Technol. 2015;224:117–134. doi: 10.1016/j.jmatprotec.2015.04.019
  • Mishra RS, Ma Z. Friction stir welding and processing. Mater Sci Eng. 2005;R50:1–78. doi: 10.1016/j.mser.2005.07.001
  • Aldajah S, Ajayi O, Fenske G, et al. Effect of friction stir processing on the tribological performance of high carbon steel. Wear. 2009;267:350–355. doi: 10.1016/j.wear.2008.12.020
  • Agarwal S, Briant CL, Hector LG Jr, et al. Friction stir processed AA5182-O and AA6111-T4 aluminum alloys. Part 1: electron backscattered diffraction analysis. J Mater Eng Perf. 2007;16:391–403. doi: 10.1007/s11665-007-9064-9
  • Darras BM. A model to predict the resulting grain size of friction-stir-processed AZ31 magnesium alloy. J Mater Eng Perf. 2012;21:1243–1248. doi: 10.1007/s11665-011-0039-5
  • Mosallaee M, Dehghan M. Improvement of structural and mechanical properties of Al-1100 Alloy via friction stir processing. J Mater Eng Perf. 2014;23:3786–3793. doi: 10.1007/s11665-014-1155-9
  • Pilchak AL, Juhas MC, Williams JC. Microstructural changes due to friction stir processing of investment-cast Ti-6Al-4 V. Met Trans. 2007;38(2):401–408. doi: 10.1007/s11661-006-9061-x
  • Noh S, Kasada R, Kimura A, et al. Microstructure and mechanical properties of friction stir processed ODS ferritic steels. J Nucl Mater. 2011;417(1-3):245–248. doi: 10.1016/j.jnucmat.2011.01.059
  • Rai R, De A, Bhadeshia H, et al. Review: friction stir welding tools. Sci Technol Weld Join. 2011;16:325–342. doi: 10.1179/1362171811Y.0000000023
  • De A, Bhadeshia H, DebRoy T. Friction stir welding of mild steel: tool durability and steel microstructure. Mater Sci Technol. 2014;30:1050–1056. doi: 10.1179/1743284714Y.0000000534
  • Morishige T, Tsujikawa M, Hino M, et al. Microstructural modification of cast Mg alloys by friction stir processing. Int J Cast Mater Res. 2008;21:109–113. doi: 10.1179/136404608X361774
  • Yadav D, Bauri R. Friction stir processing of Al-TiB2 In situ composite: effect on particle distribution. Microstructure and Properties. J Mater Eng Perf. 2015;24:1116–1124. doi: 10.1007/s11665-015-1404-6
  • Chabok A, Dehghani K. Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing. J Mater Eng Perf. 2013;22:1324–1330. doi: 10.1007/s11665-012-0424-8
  • Chen Y, Fujii H, Tsumura T, et al. Friction stir processing of 316L stainless steel plate. Sci Technol Weld Join. 2009;14:197–201. doi: 10.1179/136217108X386527
  • Sarlak H, Atapour M, Esmailzadeh M. Corrosion behavior of friction stir welded lean duplex stainless steel. Mater Des. 2015;66:209–216. doi: 10.1016/j.matdes.2014.10.060
  • Çamurlu H, Ünal N. Friction stir processing and characterisation of A380 cast aluminium alloy. Int J Met Cast Res. 2011;24:357–362. doi: 10.1179/1743133611Y.0000000008
  • Mahmoud E, Takahashi M, Shibayanagi T, et al. Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Sci Technol Weld Join. 2009;14:413–425. doi: 10.1179/136217109X406974
  • Rahbar-Kelishami A, Abdollah-Zadeh A, Hadavi M, et al. Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing. Appl Surf Sci. 2014;316:501–507. doi: 10.1016/j.apsusc.2014.08.033
  • Ghasemi-Kahrizsangi A, Kashani-Bozorg SF. Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surf Coat Technol. 2012;209:15–22. doi: 10.1016/j.surfcoat.2012.08.005
  • Dodds S, Jones A, Cater S. Tribological enhancement of AISI 420 martensitic stainless steel through friction-stir processing. Wear. 2013;302:863–877. doi: 10.1016/j.wear.2013.01.007
  • Lorenzo-Martin C, Ajayi OO. Rapid surface hardening and enhanced tribological performance of 4140 steel by friction stir processing. Wear. 2015;332-333:962–970. doi: 10.1016/j.wear.2015.01.052
  • Selvam K, Mandal P, Grewal HS, et al. Ultrasonic cavitation erosion-corrosion behavior of friction stir processed stainless steel. Ultrason Sonochem. 2018;44:331–339. doi: 10.1016/j.ultsonch.2018.02.041
  • Peat T, Galloway A, Toumpis A, et al. Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing. Mater Des. 2017;210:22–35. doi: 10.1016/j.matdes.2017.01.099
  • Grewal H, Arora H, Singh H, et al. Surface modification of hydroturbine steel using friction stir processing. Appl Surf Sci. 2013;268:547–555. doi: 10.1016/j.apsusc.2013.01.006
  • Hajian M, Abdollah-Zadeh A, Rezaei-Nejad S, et al. Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing. Appl Surf Sci. 2014;308:184–192. doi: 10.1016/j.apsusc.2014.04.132
  • Bilgin MB, Meran C. The effect of tool rotational and traverse speed on friction stir weldability of AISI 430 ferritic stainless steels. Mater Des. 2012;33:376–383. doi: 10.1016/j.matdes.2011.04.013
  • Han J, Li H, Zhu Z, et al. Microstructure and mechanical properties of friction stir welded 18Cr–2Mo ferritic stainless steel thick plate. Mater Des. 2014;63:238–246. doi: 10.1016/j.matdes.2014.05.070
  • Lakshminarayanan A, Balasubramanian V. An assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless steel joints. Mater Des. 2010;31:4592–4600. doi: 10.1016/j.matdes.2010.05.049
  • Park SHC, Sato YS, Kokawa H, et al. Microstructural characterisation of stir zone containing residual ferrite in friction stir welded 304 austenitic stainless steel. Sci Technol Weld Join. 2005;10(5):550–556. doi: 10.1179/174329305X46691
  • Sato YS, Nelson TW, Sterling CJ. Recrystallization in type 304L stainless steel during friction stirring. Acta Mater. 2005;53(3):637–645. doi: 10.1016/j.actamat.2004.10.017
  • Saeid T, Abdollah-zadeh A, Assadi H, et al. Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel. Mater Sci Eng. 2008;496(1-2):262–268. doi: 10.1016/j.msea.2008.05.025
  • Sato YS, Nelson TW, Sterling CJ, et al. Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel. Mater Sci Eng. 2005;397(1-2):376–384. doi: 10.1016/j.msea.2005.02.054
  • Srinivasan BP, Kumar SM. Characterisation of microstructure and corrosion behaviour of thin section AISI 430 stainless steel gas tungsten arc weldment. Corr Eng Sci Technol. 2009;44:137–143. doi: 10.1179/174327808X286464
  • Jata K, Semiatin L. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Mater. 2000;43:743–749. doi: 10.1016/S1359-6462(00)00480-2
  • Alizadeh-Sh M, Marashi S, Pouranvari M. Resistance spot welding of AISI 430 ferritic stainless steel: phase transformations and mechanical properties. Mater Des. 2014;56:258–263. doi: 10.1016/j.matdes.2013.11.022
  • Morisada Y, Fujii H, Nishimoto R, et al. Improvement of toughness and strength of thick structural steel weld by friction stir welding conditions. Sci Technol Weld Join. 2013;18:287–292. doi: 10.1179/1362171812Y.0000000105
  • McPherson N, Galloway A, Cater SR, et al. Friction stir welding of thin DH36 steel plate. Sci Technol Weld Join. 2013;18:441–450. doi: 10.1179/1362171813Y.0000000122
  • Lakshminarayanan A, Balasubramanian V. Comparison of electron beam and friction stir weldments of modified 12 wt% ferritic stainless steel. Mater Manuf Proc. 2011;26:868–877. doi: 10.1080/10426914.2010.515643
  • Porter DA, Easterling KE, Sherif M. Phase Transformations in Metals and alloys. Boca Raton: CRC press; 2009; ISBN 1439883572.
  • Shaira M, Godin N, Guy P, et al. Evaluation of the strain-induced martensitic transformation by acoustic emission monitoring in 304L austenitic stainless steel: identification of the AE signature of the martensitic transformation and power-law statistics. Mater Sci Eng. 2008;A492:392–399. doi: 10.1016/j.msea.2008.04.068
  • Jia N, Cong Z, Sun X, et al. An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels. Acta Mater. 2009;57:3965–3977. doi: 10.1016/j.actamat.2009.05.002
  • Tyagi R, Nath SK, Ray S. Dry sliding friction and wear in plain carbon dual phase steel. Met Trans. 2001;A32:359–367. doi: 10.1007/s11661-001-0267-7
  • Suh NP. An overview of the delamination theory of wear. Wear. 1977;44:1–16. doi: 10.1016/0043-1648(77)90081-3
  • Yang Q, Senda T, Kotani N, et al. Sliding wear behavior and tribofilm formation of ceramics at high temperatures. Surf Coat Technol. 2004;184:270–277. doi: 10.1016/j.surfcoat.2003.10.157
  • Biswas S. Some mechanisms of tribofilm formation in metal/metal and ceramic/metal sliding interactions. Wear. 2000;245:178–189. doi: 10.1016/S0043-1648(00)00477-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.