126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tribo-behavioural transition of Ti6Al4V as a function of sliding velocity and load under dry sliding conditions

, ORCID Icon, &
Pages 99-118 | Received 15 Jun 2022, Accepted 11 Oct 2022, Published online: 18 Nov 2022

References

  • Kümmel D, Schneider J, Gumbsch P. Influence of interstitial oxygen on the tribology of Ti6Al4V. Tribol Lett. 2020;68:96. doi:10.1007/s11249-020-01327-4
  • Philip JT, Mathew J, Kuriachen B. Tribology of Ti6Al4V: a review. Friction. 2019;7:497–536. doi:10.1007/s40544-019-0338-7
  • Li XX, Zhou Y, Ji XL, et al. Effects of sliding velocity on tribo-oxides and wear behavior of Ti–6Al–4V alloy. Tribol Int. 2015;91:228–234. doi:10.1016/j.triboint.2015.02.009
  • Mao YS, Wang L, Chen KM, et al. Tribo-layer and its role in dry sliding wear of Ti–6Al–4V alloy. Wear. 2013;297:1032–1039. doi:10.1016/j.wear.2012.11.063
  • Wang L, Zhang QY, Li XX, et al. Severe-to-mild wear transition of titanium alloys as a function of temperature. Tribol Lett. 2014;53:511–520. doi:10.1007/s11249-013-0289-5
  • García-Rueda AK, Guzmán-Castillo D, García-González L, et al. Surface modification of a Ti6Al4V alloy by thermal oxidation to improve its tribological properties. Mater Lett. 2022;317:132082. doi:10.1016/j.matlet.2022.132082
  • Pauschitz A, Roy M, Franek F. Mechanisms of sliding wear of metals and alloys at elevated temperatures. Tribol Int. 2008;41:584–602. doi:10.1016/j.triboint.2007.10.003
  • Gupta MK, El Etri H, Korkmaz ME, et al. Tribological and surface morphological characteristics of titanium alloys: a review. Arch Civ Mech Eng. 2022;22:72. doi:10.1007/s43452-022-00392-x
  • Ming Q, Yong-zhen Z, Jian-heng Y, et al. Microstructure and tribological characteristics of Ti–6Al–4V alloy against GCr15 under high speed and dry sliding. Mater Sci Eng A. 2006;434:71–75. doi:10.1016/j.msea.2006.07.043
  • Welsh NC. Frictional heating and its influence on the wear of steel. J Appl Phys. 1957;28:960–968. doi:10.1063/1.1722920
  • Quinn TFJ, Rowson DM, Sullivan JL. Application of the oxidational theory of mild wear to the sliding wear of low alloy steel. Wear. 1980;65:1–20. doi:10.1016/0043-1648(80)90002-2
  • Liu Y, Chen L, Jiang B, et al. Origin of low friction in hydrogenated diamond-like carbon films due to graphene nanoscroll formation depending on sliding mode: unidirection and reciprocation. Carbon N Y. 2021;173:696–704. doi:10.1016/j.carbon.2020.11.039
  • Cao J, Teng H, Wang W, et al. Tribological properties of the 40Cr/GCr15 tribo-pair under unidirectional rotary and reciprocating dry sliding. Coatings. 2022;12:557. doi:10.3390/coatings12050557
  • So H. Characteristics of wear results tested by pin-on-disc at moderate to high speeds. Tribol Int. 1996;29:415–423. doi:10.1016/0301-679X(95)00097-N
  • Dixit T, Singh I, Prasad KE. Room and high temperature dry sliding wear behavior of boron modified as-cast Ti-6Al-4V alloys against hardened steel. Wear. 2019;420–421:207–214. doi:10.1016/j.wear.2018.10.021
  • Hu M, Jing L, An Q, et al. Tribological properties and milling performance of HSS-Co-E tools with fluorinated surfactants-based coatings against Ti–6Al–4V. Wear. 2017;376–377:134–142. doi:10.1016/j.wear.2017.01.025
  • Olvera D, de Lacalle LNL, Urbikain G, et al. Hole making using ball helical milling on titanium alloys. Mach Sci Technol. 2012;16:173–188. doi:10.1080/10910344.2012.673958
  • Sharma V, Pandey PM. Recent advances in turning with textured cutting tools: a review. J Clean Prod. 2016;137:701–715. doi:10.1016/j.jclepro.2016.07.138
  • Dutt Sharma M, Sehgal R. Experimental study of friction and wear characteristics of titanium alloy (Ti-6Al-4V) under lubricated sliding condition. Ind Lubr Tribol. 2014;66:174–183. doi:10.1108/ILT-10-2011-0079
  • Philip JT, Koshy CP, Mathew MD, et al. Tribological characteristic evaluation of coconut oil dispersed with surfactant modified ceria-zirconia hybrid nanoparticles. Tribol - Mater Surf Interfaces. 2019;13:197–214. doi:10.1080/17515831.2019.1648066
  • Ashok Raj J, Pottirayil A, Kailas SV. Dry sliding wear behavior of Ti-6Al-4V pin against SS316L disk at constant contact pressure. J Tribol. 2017;139. doi:10.1115/1.4033363
  • Li X-X, Wang H-X, Chen Y-G, et al. A comparative study on the dry sliding wear properties of TC4 and TC11 alloys at different sliding velocities. Mater Res Express. 2019;6:126594. doi:10.1088/2053-1591/ab5bdc
  • Wang L, Li XX, Zhou Y, et al. Relations of counterface materials with stability of tribo-oxide layer and wear behavior of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy. Tribol Int. 2015;91:246–257. doi:10.1016/j.triboint.2015.01.028
  • Zhao Z, Zhang L, Bai P, et al. Tribological behavior of in situ TiC/graphene/graphite/Ti6Al4V matrix composite through laser cladding. Acta Metall Sin English Lett. 2021;34:1317–1330. doi:10.1007/s40195-021-01215-3
  • Wei TZ, Shamsuri SRB, Yee CS, et al. Effect of sliding velocity on wear behavior of magnesium composite reinforced with SiC and MWCNT. Procedia Eng. 2013;68:703–709. doi:10.1016/j.proeng.2013.12.242
  • Kumar D, Gosvami NN, Jain J. Influence of temperature on crystallographic orientation induced anisotropy of microscopic wear in an AZ91 Mg alloy. Tribol Int. 2021;163:107159. doi:10.1016/j.triboint.2021.107159
  • Munagala VNV, Torgerson TB, Scharf TW, et al. High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC composite coatings. Wear. 2019;426–427:357–369. doi:10.1016/j.wear.2018.11.032
  • Bhushan B. Introduction to tribology. New York: John Wiley; 2013.
  • Philip JT, Kuriachen B. Surface modification of Ti6Al4V through electrical discharge machining assisted alloying to improve its tribological behavior – the pathway to genesis of a new alloying technique. In: Pruncu CI, Aherwar A, Gorb S, editors. Progress in lubrication and nano- and biotribology. Boca Raton (FL): CRC Press; 2021. p. 181–201. doi:10.1201/9781003096443-8
  • Zhang J, Alpas AT. Transition between mild and severe wear in aluminium alloys. Acta Mater. 1997;45:513–528. doi:10.1016/S1359-6454(96)00191-7
  • Philip JT, Kumar D, Mathew J, et al. Tribological investigations of wear resistant layers developed through EDA and WEDA techniques on Ti6Al4V surfaces: Part I – ambient temperature. Wear. 2020;458–459:203409. doi:10.1016/j.wear.2020.203409
  • Philip JT, Kumar D, Mathew J, et al. Tribological investigations of wear resistant layers developed through EDA and WEDA techniques on Ti6Al4V surfaces: Part II – high temperature. Wear. 2021;466–467:203540. doi:10.1016/j.wear.2020.203540
  • Suh NP. An overview of the delamination theory of wear. Wear. 1977;44:1–16. doi:10.1016/0043-1648(77)90081-3
  • Zykova A, Vorontsov A, Chumaevskii A, et al. Structural evolution of contact parts of the friction stir processing heat-resistant nickel alloy tool used for multi-pass processing of Ti6Al4V/(Cu + Al) system. Wear. 2022;488–489:204138. doi:10.1016/j.wear.2021.204138
  • Doni Z, Alves AC, Toptan F, et al. Dry sliding and tribocorrosion behaviour of hot pressed CoCrMo biomedical alloy as compared with the cast CoCrMo and Ti6Al4V alloys. Mater Des. 2013;52:47–57. doi:10.1016/j.matdes.2013.05.032
  • Chelliah N, Kailas SV. Synergy between tribo-oxidation and strain rate response on governing the dry sliding wear behavior of titanium. Wear. 2009;266:704–712. doi:10.1016/j.wear.2008.08.011
  • Straffelini G. Friction and wear. Cham: Springer International; 2015; doi:10.1007/978-3-319-05894-8
  • Vaithilingam J, Prina E, Goodridge RD, et al. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Mater Sci Eng C. 2016;67:294–303. doi:10.1016/j.msec.2016.05.054
  • Qiu M, Zhang Y-Z, Shangguan B, et al. The relationships between tribological behaviour and heat-transfer capability of Ti6Al4V alloys. Wear. 2007;263:653–657. doi:10.1016/j.wear.2006.12.041
  • Liang X, Liu Z, Wang B. Multi-pattern failure modes and wear mechanisms of WC-Co tools in dry turning Ti–6Al–4V. Ceram Int. 2020;46:24512–24525. doi:10.1016/j.ceramint.2020.06.238
  • Zhang QY, Wang SQ, Zhou Y, et al. Artificial oxide-containing tribo-layers and their effect on wear performance of Ti-6Al-4V alloy. Tribol Int. 2017;105:334–344. doi:10.1016/j.triboint.2016.10.022
  • Zheng B, Dong F, Yuan X, et al. Microstructure and tribological behavior of in situ synthesized (TiB + TiC)/Ti6Al4V (TiB/TiC = 1/1) composites. Tribol Int. 2020;145:106177. doi:10.1016/j.triboint.2020.106177
  • Ibrahim MZ, Sarhan AAD, Yusuf F, et al. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – a review article. J Alloys Compd. 2017;714:636–667. doi:10.1016/j.jallcom.2017.04.231
  • Philip JT, Kumar D, Mathew J, et al. Experimental investigations on the tribological performance of electric discharge alloyed Ti–6Al–4V at 200–600 °C. J Tribol. 2020;142. doi:10.1115/1.4046016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.