170
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dry sliding wear of ductile and austempered ductile iron: effect of load and sliding speed

, , & ORCID Icon
Pages 119-135 | Received 31 Dec 2022, Accepted 27 Mar 2023, Published online: 18 Apr 2023

References

  • Ian Hutchings PS. Tribology: friction and wear of engineering materials title. Butterworth-heinemann: Elsevier Science; 2017.
  • Du Y, Wang X, Zhang D, et al. A superior strength and sliding-wear resistance combination of ductile iron with nanobainitic matrix. J Mater Res Technol. 2021;11:1175–1183. doi:10.1016/j.jmrt.2021.01.104.
  • Flodström I. Nitrocarburizing and high temperature nitriding of steels in bearing applications, Diploma work in the Master Program Advanced Engineering Materials, Chalmers University of Technology, 2012.
  • Pawel SJ. A performance evaluation of coating systems for long term aqueous immersion service. United States: N. p.; 1994. Web. doi:10.2172/39125.
  • Ouyang JH, Li YF, Zhang YZ, et al. High-temperature solid lubricants and self-lubricating composites: a critical review. Lubricants. 2022;10. doi:10.3390/lubricants10080177.
  • Batra U, Singh M, Sharma SK. Effect of austempering temperature on microstructure and tribological behaviour of hypoeutectic austempered ductile iron alloyed with copper. Tribolo- Mater Surf Interf. 2022. doi:10.1080/17515831.2022.2105990.
  • Yan Q, Ma H, Zhang D, et al. Oleic acid modified oxide graphene/triazine-based covalent-organic frameworks composite: cooperation between heterostructure and electrical double layer to enhance tribological performances. Tribol Int. 2023;178. doi:10.1016/j.triboint.2022.108066.
  • Chawla V, Batra U, Puri D, et al. To study the effect of austempering temperature on fracture behaviour of Ni-Mo austempered ductile iron (ADI). J Miner Mater Charact Eng. 2008;07:307–316. doi:10.4236/jmmce.2008.74024.
  • Datt J, Batra U. Influence of composition and austempering temperature on machinability of austempered ductile iron. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metallur Eng. 2013;7:116–121.
  • Batra U, Ray S, Prabhakar SR. The influence of nickel and copper on the austempering of ductile iron. J Mater Eng Perform. 2004;13:64–68. doi:10.1361/10599490417515.
  • Batra U, Batra N, Sharma JD. Wear performance of Cu-alloyed austempered ductile iron. J Mater Eng Perform. 2013;22:1136–1142. doi:10.1007/s11665-012-0380-3.
  • Wang B, Pan Y, Liu Y, et al. Effects of quench-tempering and laser hardening treatment on wear resistance of gray cast iron. J Mater Res Technol. 2020;9:8163–8171. doi:10.1016/j.jmrt.2020.05.006.
  • Batra U. Fracture behavior and mechanism in austempered ductile iron. J Fail Anal Prev. 2005;5:75–81. doi:10.1361/154770205X65936.
  • Batra U, Ray S, Prabhakar SR. Effect of copper on austempering behavior of ductile iron. J Mater Eng Perform. 2003;12:597–601. doi:10.1361/105994903100277120.
  • Batra U, Ray S, Prabhakar SR. Austempering and austempered ductile iron microstructure in copper alloyed ductile iron. J Mater Eng Perform. 2003;12:426–429. doi:10.1361/105994903770342962.
  • Wang B, Pan Y, Liu Y, et al. Wear behavior of composite strengthened gray cast iron by austempering and laser hardening treatment. J Mater Res Technol. 2020;9:2037–2043. doi:10.1016/j.jmrt.2019.12.036.
  • Mao J, Chen G, Zhao J, et al. An investigation on the tribological behaviors of steel/copper and steel/steel friction pairs via lubrication with a graphene additive. Friction. 2021;9:228–238. doi:10.1007/s40544-019-0327-x.
  • Straffelini G, Pellizzari M, Maines L. Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron. Wear. 2011;270:714–719. doi:10.1016/J.WEAR.2011.02.004.
  • Kucharski S, Mrz Z. Identification of wear process parameters in reciprocating ball-on-disc tests. Tribol Int. 2011;44:154–164. doi:10.1016/j.triboint.2010.10.010.
  • Wang BL, Morris DS, Farshid S, et al. Rolling contact fatigue study of chilled and quenched/tempered ductile iron compared with AISI 1080 steel. Wear. 2021;478–479:203890. doi:10.1016/j.wear.2021.203890.
  • Archard JF. Elastic deformation and the laws of friction. Proc R Soc Lond A Math Phys Sci. 1957;243:190–205. doi:10.1098/rspa.1957.0214.
  • Gupta S, Sharma SK, Kumar BVM, et al. Tribological characteristics of SiC ceramics sintered with a small amount of Yttria. Ceram Int. 2015;41:14780–14789. doi:10.1016/J.CERAMINT.2015.07.210.
  • Dong K, Lu C, Zhou W, et al. Wear behavior of a multiphase ductile iron produced by quenching and partitioning process. Eng Fail Anal. 2021;123:105290. doi:10.1016/j.engfailanal.2021.105290.
  • Bajaj P, Poddar V, Kshemendranath A, et al. Effect of austenitising temperature on microstructure and wear properties of low carbon equivalent austempered ductile iron. Indian Foundry J. 2013;59:23–28.
  • Sellamuthu P, Samuel DGH, Dinakaran D, et al. Austempered ductile iron (ADI): influence of austempering temperature on microstructure, mechanical andwear properties and energy consumption. Metals (Basel). 2018;8. doi:10.3390/met8010053.
  • Mussa A, Krakhmalev P, Bergström J. Wear mechanisms and wear resistance of austempered ductile iron in reciprocal sliding contact. Wear. 2022;498–499:204305. doi:10.1016/J.WEAR.2022.204305.
  • Kumari UR, Rao PP. Study of wear behaviour of austempered ductile iron. J Mater Sci. 2009;44:1082–1093. doi:10.1007/S10853-008-3195-8.
  • Wang Y, Song R, Huang L. The effect of retained austenite on the wear mechanism of bainitic ductile iron under impact load. J Mater Res Technol. 2021;11:1665–1671. doi:10.1016/j.jmrt.2021.01.122.
  • Du Y, Gao X, Wang X, et al. Tribological behavior of austempered ductile iron (ADI) obtained at different austempering temperatures. Wear. 2020;456–457:203396. doi:10.1016/j.wear.2020.203396.
  • Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films: high strength and enhanced fracture toughness. Scr Mater. 2019;168:51–55. doi:10.1016/j.scriptamat.2019.04.011.
  • Straffelini G. A simplified approach to the adhesive theory of friction. Wear. 2001;249:78–84. doi:10.1016/S0043-1648(01)00524-5.
  • Sugishita J, Fujiyoshi S. The effect of cast iron graphite on friction and wear performance III: The lubricating effect of graphite under rolling-sliding contacts. Wear. 1982;77:181–193. doi:10.1016/0043-1648(82)90102-8.
  • Gans LHA, Martinez JAB, Koda F, et al. Effect of size nodule graphite on the wear resistance of ADI: a finite element study, in: 2nd International Brazilian Conference on Tribology, Research Gate, 2019: p. 35–54. doi:10.5151/1472-5836-25314.
  • Bang J, Park N, Song J, et al., tool wear prediction in the forming of automotive DP980 steel sheet using statistical sensitivity analysis and accelerated U-bending based wear test. Metals (Basel). 2021. doi:10.3390/met11020306.
  • Meng HC, Ludema KC. Wear models and predictive equations: their form and content. Wear. 1995;181–183:443–457. doi:10.1016/0043-1648(95)90158-2.
  • Mishina H, Hase A. Wear equation for adhesive wear established through elementary process of wear. Wear. 2013;308:186–192. doi:10.1016/j.wear.2013.06.016.
  • Hegadekatte V, Kurzenhäuser S, Huber N, et al. A predictive modeling scheme for wear in tribometers. Tribol Int. 2008;41:1020–1031. doi:10.1016/j.triboint.2008.02.020.
  • Mahade S, Awe SA, Björklund S, et al. Sliding wear behavior of a sustainable Fe-based coating and its damage mechanisms. Wear. 2022;500–501:204375. doi:10.1016/J.WEAR.2022.204375.
  • Satapathy K, Psaltis D, Özel F, et al. Dry tribological properties of M50 bearing steel under different temperatures. Mater Res Express. 2022;9:026523. doi:10.1088/2053-1591/ac54d5.
  • Wang B, Qiu F, Barber GC, et al. Microstructure, wear behavior and surface hardening of austempered ductile iron. J Mater Res Technol. 2020;9:9838–9855. doi:10.1016/j.jmrt.2020.06.076.
  • Protim Neog S, Ranjan Kumar A, Das Bakshi S, et al. Understanding the complexities of dry sliding wear behaviour of steels. Mater Sci Technol. 2021;37:504–518. doi:10.1080/02670836.2021.1923136.
  • Woodward RG, Toumpis A, Galloway A. The influence of tempering and annealing on the microstructure and sliding wear response of G350 grey cast iron. Wear. 2022;496–497:204283. doi:10.1016/J.WEAR.2022.204283.
  • Wang B, Barber GC, Qiu F, et al. A review: phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons. J Mater Res Technol. 2020;9:1054–1069. doi:10.1016/j.jmrt.2019.10.074.
  • Liu C, Du Y, Wang X, et al. Comparison of the tribological behavior of quench-tempered ductile iron and austempered ductile iron with similar hardness. Wear. 2023: 520–521. doi:10.1016/j.wear.2023.204668.
  • Wang Z, Liu W, Yuan W, et al. The effect of laser in-situ induced graphene-like micro-texture on the friction and wear properties of ductile cast iron. J Mater Res Technol. 2021;12:2407–2413. doi:10.1016/j.jmrt.2021.04.038.
  • Li C, Deng X, Huang L, et al. Effect of temperature on microstructure, properties and sliding wear behavior of low alloy wear-resistant martensitic steel. Wear. 2020;442–443:203125. doi:10.1016/J.WEAR.2019.203125.
  • Bendikiene R, Ciuplys A, Cesnavicius R, et al. Influence of austempering temperatures on the microstructure and mechanical properties of austempered ductile cast iron. Metals (Basel). 2021;11. doi:10.3390/met11060967.
  • Yan X, Hu J, Yu H, et al. Unraveling the significant role of retained austenite on the dry sliding wear behavior of medium manganese steel. Wear. 2021;476:203745. doi:10.1016/j.wear.2021.203745.
  • Wang B, Barber GC, Tao C, et al. Tribological performance of austempered and tempered ductile iron. Metall Mater Trans B. 2018;49:2261–2269. doi:10.1007/S11663-018-1338-0.
  • Fordyce EP, Allen C. The dry sliding wear behaviour of an austempered spheroidal cast iron. Wear. 1990;135:265–278. doi:10.1016/0043-1648(90)90030-E.
  • Ping L, Bahadur S, Verhoeven JD. Friction and wear behavior of high silicon bainitic structures in austempered cast iron and steel. Wear. 1990;138:269–284. doi:10.1016/0043-1648(90)90181-9.
  • Zheng L, Zhang M, Dong J. Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000°C. Appl Surf Sci. 2010;256:7510–7515. doi:10.1016/j.apsusc.2010.05.098.
  • Lu G-X, Zhang H. Sliding wear characteristics of austempered ductile iron with and without laser hardening. Wear. 1990;138:1–12. doi:10.1016/0043-1648(90)90163-5.
  • Sharma SK, Kumar BVM, Zugelj BB, et al. Room and high temperature reciprocated sliding wear behavior of SiC-WC composites. Ceram Int. 2017;43:16827–16834. doi:10.1016/J.CERAMINT.2017.09.080.
  • Sharma SK, Manoj Kumar BV, Kim YW. Tribology of WC reinforced SiC ceramics: influence of counterbody. Friction. 2019;7:129–142. doi:10.1007/S40544-017-0194-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.