165
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Braking performance of friction materials: a review of manufacturing process impact and future trends

, &
Pages 136-157 | Received 27 Jun 2022, Accepted 21 Feb 2023, Published online: 05 Jun 2023

References

  • Kukutschová J, Roubíček V, Malachová K, et al. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear. 2009;267:807–817. doi:10.1016/j.wear.2009.01.034
  • Shiva Shanker P. A review on properties of conventional and metal matrix composite materials in manufacturing of disc brake. Mater Today Proc. 2018;5:5864–5869.
  • Mistry JM, Gohil PP. Experimental investigations on wear and friction behavior of Si3N4p reinforced heat-treated aluminum matrix composites produced using electromagnetic stir casting process. Compos Part B: Eng. 2019;161:190–204.
  • Zhao S, Yan Q, Peng T, et al. The braking behaviors of Cu-based powder metallurgy brake pads mated with C/C–SiC disk for high-speed train. Wear. 2020;448-449:203–237. doi:10.1016/j.wear.2020.203237.
  • Bian G, Wu H. Friction performance of carbon/silicon carbide ceramic composite brakes in ambient air and water spray environment. Tribol Int. 2015;92:1–11.
  • Solomon DG, Berhan MN. Characterization of friction material formulations for brake pads. Proceedings of the World Congress on Engineering; 2007.
  • Bijwe J. Chapter 17: Multifunctionality of nonasbestos organic brake materials. In: Friedrich K., Breuer U, editors. Multifunctionality of polymer composites: challenges and new solutions. William Andrew Publishing2015. p. 551–572. doi:10.1016/B978-0-323-26434-1.00017-9.
  • Kryachek VM. Friction composites: traditions and new solutions (review). I. Powder materials. Powder Metall Met Ceram. 2004;43:581–592.
  • Gultekin D, Uysal M, Aslan S, et al. The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al-SiCp MMC brake disc system. Wear. 2010;270:73–82.
  • Xiao X, Yin Y, Bao J, et al. Review on the friction and wear of brake materials. Adv Mech Eng. 2016;8:1–10.
  • Zhu Z, Xu L, Chen G. Effect of different whiskers on the physical and tribological properties of non-metallic friction materials. Mater Des. 2011;32:54–61.
  • Ige OE, Inambao FL, Adewumi GA. Effects of fiber, fillers, and binders on automobile brake pad performance: a review. Int J Mech Eng Technol. 2019;10:135–150.
  • Subagia IDG, Atmika KT, Setiadi WN, et al. Wear behavior of basalt powder reinforced phenolic resin matrix composites brake lining pads. Presented at International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2016). Atlantis Press; 2016. p. 20–25.
  • Yuvaraj L, Jeyanthi S. An investigation on chemical treatment of phenol formaldehyde with natural fibers for brake pads. J Chem Pharmaceut Sci. 2015;7:419–421.
  • Adegbola J, Adedayo S, Ohijeagbon I. Development of cow bone resin composites as a friction material for automobile braking systems. J Prod Eng. 2017;20:69–74.
  • Liu Y, Xie J, Wu N, et al. Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol Int. 2019;131:398–405.
  • Makni F, Cristol A-L, Kchaou M, et al. Synergistic effects of fiber arrangements on the microstructure and properties of organic composite materials. J Compos Mater. 2020;54:1–14.
  • Wu S, Zhao J, Guo M, et al. Effect of fiber shape on the tribological, mechanical, and morphological behaviors of sisal fiber-reinforced resin-based friction materials: helical, undulated, and straight shapes. Materials. 2021;14;5410. DOI:10.3390/ma14185410.
  • Satapathy BK, Bijwe J. Performance of friction materials based on variation in nature of organic fibres: part I. fade and recovery behavior. Wear. 2004;257:573–584.
  • Rajmohan B, Arunachalam K, Sundarapandian G. Predict the tribological properties on brake pad using coconut shell/sugarcane/sic powder hybrid composites. Int J Eng Innov Technol. 2017;7:43–49.
  • Kumar D, Boopathy R, Sangeetha D. Investigation on tribological properties of horn fiber reinforced phenol formaldehyde composites. Int J Adv Eng Technol. 2016;7:599–607.
  • Maleque MA, Atiqah A, Talib RJ, et al. New natural fiber reinforced aluminum composite for automotive brake pad. Int J Mech Mater Eng. 2012;7:166–170.
  • Olele PC, Nkwocha AC, Ekeke IC, et al. Assessment of Palm Kernel Shell as friction material for brake Pad production. Int J Eng Manage Res. 2016;6:281–284.
  • Ma Y, Shen S, Tong J, et al. Effects of bamboo fibers on friction performance of friction materials. J Thermoplast Compos Mater. 2013;26:845–859.
  • Olabisi A, Ademoh N, Boye T. Development of asbestos-free automotive brake pad using ternary agro waste fillers. J Multidiscip Eng Sci Technol. 2016;3:5307–5323.
  • Mutlu I, Sugozu I, Keskin A. The effects of porosity in friction performance of brake pad using waste tire dust. Polímeros. 2015;25:440–446.
  • Achebe C, Chukwuneke J, Anene F, et al. A retrofit for asbestos-based brake Pad employing palm kernel fiber as the base filler material. Proc Inst Mech Eng J Mater: Des Appl: Part L. 2019;233:1906–1913.
  • Ikpambese K, Gundu D, Tuleun L. Evaluation of Palm Kernel Fibers (PKFs) for production of asbestos-free automotive brake pads. J King Saud Univ Eng Sci. 2016;28:110–118.
  • Acharya S, Samantrai S. The friction and wear behavior of modified rice husk filled epoxy composite, ACUN6 – composites and nanocomposites in civil, offshore and mining infrastructure, Melbourne-Australia, 14–16 November (2012).
  • Ademoh NA, Olabisi AI. Development and evaluation of maize husks (AsbestosFree) based brake Pad. Ind Eng Lett. 2015;5:67–80.
  • Bashar DA, Madakson PB, Manji J. Material selection and production of a cold worked composite brake pad. World J Eng Pure & Appl Sci. 2012;2:92.
  • Kim YC, Cho MH, Kim SJ, et al. The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials. Wear. 2008;264:204–210.
  • Olabisi AI, Adam AN, Okechukwu OM. Development and assessment of composite brake Pad using pulverized cocoa beans shells filler. Int J Mater Sci Appl. 2016;5:66–78.
  • Garshin AP, Kulik VI. Braking friction materials based on fiber reinforced composites with carbon and ceramic matrices. Refract Ind Ceram. 2008;49:391–396.
  • Ma X, Fan S, Sun H, et al. Investigation on braking performance and wear mechanism of full-carbon/ceramic braking pairs. Tribol Int. 2020;142:105981. doi:10.1016/j.triboint.2019.105981.
  • Krenkel W, Georges J., Ceramic matrix composites for friction applications. Ceramic matrix composites: materials, modeling and technology. KGaA: Wiley-VCH Verlag GmbH & Co; 2014. p. 647–671. doi:10.1002/9781118832998.ch23.
  • Sri karthikeyan S, Balakrishnan E, Meganathan S, et al. Elemental analysis of brake pad using natural fibres. Mater Today Proc. 2019;16:1067–1074.
  • Marin E, Daimon E, Boschetto F, et al. Diagnostic spectroscopic tools for worn brake pad materials: a case study. Wear. 2019;432-433:202969. DOI:10.1016/j.wear.2019.202969.
  • Nagesh S, Siddaraju C, Prakash S, et al. Characterization of brake pads by variation in composition of friction materials. Proc Mater Sci. 2014;5:295–302.
  • Kim M. Development of the braking performance evaluation technology for high speed brake dynamometer, international journal of systems applications. Eng Development. 2012;6:122–129.
  • Gyimah GK, Guo Z, Huang P, et al. Chapter 15: Application of powder metallurgy methods for production of a novel Cu-based composite frictional train brake material. In: Chen D., Guo Z., Gyimah K. G., et al., editors. Powder Metallurgy - Fundamentals and Case Studies. InTech; 2017. p. 349–382. doi:10.5772/67533.
  • Balotin J, Neis P, Ferreira N. Analysis of the influence of temperature on the friction coefficient of friction materials. ABCM Symposium Series in Mechatronics. 2010;4:898–906.
  • Ostermeyer G. On the dynamics of the friction coefficient. Wear. 2003;254:852–858.
  • Osterle W, Dimitriev AI. Functionality of conventional brake friction materials – perceptions from findings observed at different length scales. Wear. 2011;271:2198–2207.
  • Beddows DCS, Dall'Osto M, Olatunbosun OA, et al. Detection of brake wear aerosols by aerosol time-of-flight mass spectrometry. Atmos Environ. 2016;129:167–175.
  • Verma PC, Menapace L, Bonfanti A, et al. Braking pad-disc system: wear mechanisms and formation of wear fragments. Wear. 2015;322–323:251–258.
  • Grigoratos T, Martini G. Non-exhaust traffic related emissions—brake and tire wear PM, Joint Research Centre (JRC) report, Institute for Energy and Transport of the European Union (2014), DOI:10.2790/21481.
  • Jang H. Brake friction materials. Q.J. Wang, YW. Chung, editors. Encyclopedia of tribology. e-book. Boston, MA: Springer; 2013. p. 263–273. doi:10.1007/978-0-387-92897-5.
  • Dante RC. Chapter 4: Production processes for organic brake pads. In: Dante RC, editor. Handbook of friction materials and their applications. Elsevier Ltd.Woodhead Publishing; 2016. p. 55–65. doi:10.1016/C2015-0-00634-7.
  • Aleksendric D, Carlone P. Chapter 3: Composite materials manufacturing. In: Aleksendric D, Carlone P, editors. Soft computing in the design and manufacturing of composite materials applications to brake friction and thermoset matrix composites. Elsevier Ltd.Woodhead Publishing; 2015. p. 15–38.
  • Ikpambese KK, Gundu DT, Tuleun LT. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free au tomotive brake pads. J King Saud Univ - Eng Sci. 2016;28:110–118.
  • IDris UD, Aigbodion VS, Abubakar IJ, et al. Ecofriendly asbestos free brake-pad: using banana peels. J King Saud Univ - Eng Sci. 2015;27:185–192.
  • Lee PW, Filip P. Friction and wear of Cu-free and Sb-free environmental friendly automotive brake materials. Wear. 2013;302:1404–1413.
  • Singh T, Patnaik A. Performance assessment of lapinus–aramid based brake pad hybrid phenoliccomposites in friction braking. Archives of Civil and Mech Eng. 2015;15:151–161.
  • Arman M, Singhal S, Chopra P, et al. A review on material and wear analysis of automotive break Pad. Mater Today Proc. 2018;5:28305–28312.
  • Kim SJ, Kim KS, Jang H. Optimization of manufacturing parameters for a brake lining using taguchi method. J Mater Process Technol. 2003;136:202–208.
  • Ertan R, Yavuz N. An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials. Wear. 2010;268:1524–1532.
  • Aleksendric D, Senatore A. Optimization of manufacturing process effects on brake friction material wear. J Compos Mater. 2012;46:2777–2791.
  • Hentati N, Cristol A-L, Najjar D, et al., influence of hot molding parameters on tribological and wear properties of a friction material. Tribol Trans. 2014;57:387–395.
  • Hentati N, Kchaou M, Cristol A-L, et al. Impact of hot molding temperature and duration on braking behavior of friction material. Proc Inst Mech Eng, Part J: J Eng Tribol. 2019;234:1416–1424.
  • Abutu J, Lawal SA, Ndaliman MB, et al. Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis. Eng Sci Technol Int J. 2018;21:787–779.
  • Hentati N, Kchaou M, Cristol A-L, et al. Impact of post-curing duration on the mechanical and tribological behavior of an organic friction material. Mater Des. 2014;63:699–709.
  • Saindane U, Soni S, Menghani JV. Recent research status on synthesis and characterization of natural fibers reinforced polymer composites and modern friction materials – an overview. Mater Today Proc. 2020;26:1616–1620.
  • Monteiro SN, lopes FPD, Ferreira AS, et al. Natural-Fiber polymer-matrix composites: cheaper, tougher and environmentally friendly. JOM. 2014;61:17–22.
  • Alsaeed T, Yousif BF, Ku H. The potential of using date palm fibers as reinforcement for polymeric composites. Mater Des. 2013;43:177–184.
  • Nguyen D, Taylor J. Automotive and industrial applications—II: continuous process for manufacturing of friction materials. 45th International SAMPE Symposium and Exhibition (Proceedings)- Bridging the centuries with sampe's materials and processes technology. Vol. 45. 2000. p. 2307–2318.
  • Chan D, Stachowiak GW. Review of automotive brake friction materials. Proc Inst Mech Eng, Part D: J Automobile Eng. 2004;218:953–966.
  • Ma YH, Liu YC, Menon C, et al. Evaluation of wear resistance of friction materials prepared by wet granulation. ACS Appl Mater. 2015;7:22814–22820.
  • Liu Y, Wang L, Liu D, et al. Evaluation of wear resistance of corn stalk fiber reinforced brake friction materials prepared by wet granulation. Wear. 2019;432–433:102918–102930. doi:10.1016/j.wear.2019.05.033.
  • De Simone V, Caccavo D, Lamberti G, et al. Wet-granulation process: phenomenological analysis and process parameters optimization. Powder Technol. 2018;340:411–419.
  • Abhik R, Umasankar V, Anthony Xavior M. Evaluation of properties for Al-SiC reinforced metal matrix composite for brake pads. Procedia Eng. 2014;97:941–950.
  • Mann R, Magnier V, Brunel J-F, et al. Relation between mechanical behavior and microstructure of a sintered material for braking application. Wear. 2017;386–387:1–16.
  • Xiao Y, Zhang Z, Yao P, et al. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in highspeed trains. Tribol Int. 2018;119:585–592.
  • Zhou H, Yao P, Xiao Y, et al. Friction and wear maps of copper metal matrix composites with different iron volume content. Tribol Int. 2019;132:199–210.
  • Bashar D-A, Madakson PB, Manji J. Material selection and production of a cold worked composite brake pad. World J Eng Pure Appl Sci. 2012;2:92–97.
  • Sekunowo OI, Durowaye SI, Lawal GI. Synthesis and characterization of iron millscale particles reinforced ceramic matrix composite. J King Saud Univ- Eng Sci. 2019;31:78–85.
  • Jeganmohan S, Sugozu B. Usage of powder pinus brutia cone and colemanite combination in brake friction composites as friction modifier. Mater Today Proc. 2020;27(3):2072–2075. doi:10.1016/j.matpr.2019.09.070.
  • Maleque M, Atiqah A, Talib R, et al. New natural fibre reinforced aluminum composite for automotive brake pad. Int J Mech Mater Eng. 2012;7:166–170.
  • Baklouti M, Cristol A-L, Elleuch R, et al. Brass in brake linings: key considerationsfor its replacement. Proc Inst Mech Eng Part J: J Eng Tribol. 2015;231:461–468.
  • Rupiyawet K, Kaewlob K, Sujaridworakun P, et al. Optimization of mixing conditions on the physical and tribological properties of brake pads. Key Eng Mater. 2019;824:67–72.
  • Malachova K, Kukutschova J, Rybkova Z, et al. Toxicity and mutagenicity of low-metallic automotive brake pad materials. Ecotoxicol Environ Saf. 2016;131:37–44.
  • Kukutschová J, Roubíček V, Mašláň M, et al. Wear performance and wear debris of semimetalic automotive brake materials. Wear. 2010;268:86–93.
  • Plachá D, Peikertová P, Kukutschová J, et al. Identification of organic compounds released from low metallic automotive model brake pad and its non-airborne wear particles. SAE Int J Mater Manuf. 2016;9:123–132.
  • Plachá D, Vaculík M, Mikeska M, et al. Release of volatile organic compounds by oxidative wear of automotive friction materials. Wear. 2017;376–377:705–716.
  • Raj JS, Christy TV, Gnanaraj SD, et al. Influence of calcium sulfate whiskers on the tribological characteristics of automotive brake friction materials. Eng Sci Technol, an Int J. 2020;23:445–451.
  • Bijwe J, Kumar M, Gurunath PV, et al. Optimization of brass contents for best combination of tribo-performance and thermal conductivity of non-asbestos organic (NAO) friction composites. Wear. 2008;265:699–712.
  • Vijay R, Singaravelu DL, Filip P. Influence of molybdenum disulfide particle size on friction and wear characteristics of non-asbestos-based copper-free brake friction composites. Surf Rev Lett. 2019;27:1–20.
  • Antonyraj IJ, Singaravelu DL. Tribological characterization of various solid lubricants based copper-free brake friction materials – A comprehensive study. Mater Today Proc. 2020;27:2650–2656.
  • Edokpia RO, Aigbodion VS, Obiorah OB, et al. Evaluation of the properties of ecofriendly brake pad using egg shell particles-gum arabic. Results Phys. 2014. doi:10.1016/j.rinp.2014.06.003.
  • Singh T, Pruncu CI, Gangil B, et al. Comparative performance assessment of pineapple and Kevlar fibers based friction composites. J Mater Res Technol. 2020;9:1491–1499.
  • Krishnan GS, Kumar S, Suresh G, et al. Role of metal composite alloys in non-asbestos brake friction materials-A solution for copper replacement. Mater Today Proc. 2020;45:926–929. DOI:10.1016/j.matpr.2020.02.943
  • Singaravelu DL, Vijay R, Filip P. Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear. 2019;426–427:1129–1141.
  • Singh T, Patnaik A, Chauhan R. Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis. Mater Des. 2016;895:1335–1342.
  • Makni F, Kchaou M, Cristol A-L, et al. A new method of mixing quality assessment for friction material constituents toward better mechanical properties. Powder Metall Met Ceram. 2017;56:1–13.
  • Cecere JA. United States patent: US5595266A: Bonding a friction material brake lining element to a metallic backing plate element (1997).
  • Bonfanti A. Low-impact friction materials for brake pads [Ph.D.thesis], University of Trento, Department of Industrial Engineering; June 2016.
  • Wei L, Choy YS, Cheung CS, et al. Tribology performance, airborne particle emissions and brake squeal noise of copper-free friction materials. Wear. 2020;448–449:203–215. doi:10.1016/j.wear.2020.203215. Elsevier.
  • Kumar N, Singh T, Grewal JS, et al. Experimental investigation on the physical, mechanical and tribological properties of hemp fiber-based non-asbestos organic brake friction composites. Mater Res Express. 2019;6:085710. DOI:10.1088/2053-1591/ab2399.
  • Ait Aissa A, Duchesne C, Rodrigue D. Polymer powders mixing part I: mixing characterization in rotating cylinders. Chem Eng Sci. 2010;65:786–795.
  • Bledzki AK, Letma M, Viksne A, et al. A comparison of compounding processes and wood type for wood fiber—PP composites. Composites Part A. 2005;36:789–797.
  • Drava GD, Leardi R, Portesani A, et al. Application of chemometrics to the production of friction materials: analysis of previous data and search of New formulations. Chemom Intell Lab Syst. 1996;32:245–255.
  • Cristol A-L, Hentati N, Limodin N, et al. Impact of hot molding on friction material microstructure, Eurobrake, Lille-France. 13-15 Mai 2014.
  • Bijwe J, Nidhi B, Majumdar N, et al. Influence of modified phenolic resins on the fade and recovery behavior of friction materials. Wear. 2005;259:1068–1078.
  • Ho SC, Chern Lin JH, Ju CP. Effect of fiber addition on mechanical and tribological properties of a copper/phenolic-based friction material. Wear. 2005;258:861–869.
  • Zhao LG, Warrior NA, Long AC. A micromechanical study of residual stress and its effect on transverse failure in polymer–matrix composites. Int J Solids Struct. 2006;43:5449–5467.
  • Wolfrum J, Ehrenstein GW. Interdependence between the curing, structure and the mechanical properties of phenolic resins. J Appl Polym Sci. 1999;74:3173–3185.
  • Rashid B, Leman Z, Jawaid M, et al. Chapter: eco-friendly composites for brake pads from agro waste: a review. Ref Module Mat Sci Mater Eng. 2017;3:209–228. doi:10.1016/B978-0-12-803581-8.10159-6. Elsevier Inc.
  • Cristol A-L, Baklouti M, Hentati N, et al. Matériaux de friction: formulation simplifiée pour la compréhension du rôle des constituants et de l'impact du procédé d'élaboration. MATEC Web of Conf. 2013;7:1021-1–1021-3. doi:10.1051/matecconf/20130701021.
  • Sai Balaji MA, Kalaichelvan K. Thermal and fade aspects of a non asbestos semi metallic disc brakepad formulation with two different resins. Adv Mat Res. 2013;622-623:1559–1563.
  • Lu Y. A combinatorial approach for automotive friction materials: effects of ingredients on friction performance. Compos Sci Technol. 2006;66:591–598.
  • Ibhadode AOA, Dagwa IM. Development of asbestos-free friction lining material from palm kernel shell. J Braz Soc Mech Sci Eng. 2008;30:166–173.
  • Yun R, Lu Y, Filip P. Application of extension evaluation method in development of novel eco-friendly brake materials. SAE Int J Mater Manuf. 2010;2:1–7.
  • Yun R, Martynková SG, Lu Y. Performance and evaluation of nonasbestos organic brake friction composites with SiC particles as an abrasive. J Compos Mater. 2011;45:1585–1593.
  • Han L, Huang L, Zhang J, et al. Optimization of ceramic friction materials. Compos Sci Technol. 2006;66:2895–2906.
  • Singh T, Patnaik A, Chauhan R. Optimization of tribological properties of cement kiln dust- filled brake pad using grey relation analysis. Mater Des. 2016;89:1335–1342.
  • Mahale V, Bijwe J, Sinha S. Application and comparative study of new optimization method for performance ranking of friction materials. Proc Inst Mech Eng Part J J Eng Tribol. 2018;232:143–154.
  • Singh T, Patnaik A, Fekete G, et al. Application of hybrid analytical hierarchy process and complex proportional assessment approach for optimal design of brake friction materials. Polym Compos. 2019;40:1602–1608.
  • Singh T, Patnaik A, Chauhan R, et al. Selection of brake friction materials using hybrid analytical hierarchy process and vise Kriterijumska Optimizacija Kompromisno Resenje approach. Polym Compos. 2018;39:1655–1662.
  • Mansor MR, Sapuan S, EdiSyams Z, et al. Application of integrated A HP-TOPSIS method in hybrid natural fiber composites materials selection for automotive parking brake lever component. Aust J Basic Appl Sci. 2014;8:431–439.
  • Singh T, Patnaik A, Satapathy BK, et al. Performance analysis of organic friction composite materials based on carbon nanotubes-organic-inorganic fibrous reinforcement using hybrid AHP-FTOPSIS approach. Compos: Mech, Comput Appl An Int J. 2012;3:189–214.
  • Singh T, Patnaik A, Satapathy BK. Development and optimization of hybrid friction materials consisting of nanoclay and carbon nanotubes by using analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPS) under fuzzy atmosphere. Walailak J Sci Technol. 2013;10:343–362.
  • Singh T, Patnaik A, Gangil B, et al. Optimization of tribo-performance of brake friction materials: effect of nano filler. Wear. 2015;324-325:10–16.
  • Kumar N, Singh T, Rajoria RS, et al. Optimum design of brake friction material using hybrid entropy-GRA approach, MATEC Web of Conferences. EDP Sci. 2016;57:03002. DOI:10.1051/matecconf/20165703002.
  • Kumar N, Singh T, Rajoria RS, et al. Optimum design of natural fiber reinforced brake friction material using hybrid entropy-VIKOR approach. Adv Sci Lett. 2016;22:3961–3964.
  • Ahlawat V, Anuradha P, Kaja S. Preference selection of brake friction composite using entropy-VIKOR technique. Materials Today: Proceedings. 2021;46(19):9573–9579. doi:10.1016/j.matpr.2020.04.256. Elsevier Ltd.
  • Lu Y, Tang CF, Wright M. Optimization of a commercial brake pad formulation. J Appl Polym Sci. 2002;84:2498–2504.
  • Satapathy BK, Bijwe J. Performance of friction materials based on variation in nature of organic fibres (part-I): fade and recovery behavior. Wear. 2004;257:573–584.
  • Zhao YL, Lu YF, Wright MA. Sensitivity series and friction surface analysis of non-metallic friction materials. Mater Des. 2006;27:833–838.
  • Matejka V, Martynkova G, Ma Y, et al. Semi metallic brake friction materials containing ZrSiO4: friction performance and friction layers evaluation. J Compos Mater. 2009;43:1421–1434.
  • Zhu Z, Xu L, Chen G, et al. Optimization on tribological properties of aramid fibre and CaSO4 whisker reinforced Non-metallic friction material with analytic hierarchy process and preference ranking organization method for enrichment evaluations. Mater Des. 2010;31:551–555.
  • Yun R, Martynkova S, Lu Y. Performance and evaluation of Non-asbestos organic brake friction composites with SiC particles as an abrasive. J Compos Mater. 2011;45:1585–1593.
  • Sriwiboon M, Tiempan N, Kaewlob K. Influence of formulation and process modifications on brake friction, wear and squeal: Low-copper NAOs and importance of disc wear. SAE Technical Paper. 2014. DOI: 10.4271/2014-01-2482
  • Ricciardi V, Augsburg K, Gramstat S, et al. Survey on modelling and techniques for friction estimation in automotive brakes. Appl Sci. 2017;7:873. DOI:10.3390/app7090873.
  • Aleksendric D, Duboka C. Prediction of automotive friction material characteristics using artificial neural networks – cold performance. Wear. 2006;261:269–282.
  • Aleksendrić D. Neural network prediction of brake friction materials wear. Wear. 2010;268:117–125.
  • Rajesh PK, Manikandan N, Ramshankar CS, et al. Digital twin of an automotive brake Pad for predictive maintenance. Proc Comput Sci. 2019;165:18–24.
  • Shafto M, Conroy M, Doyle R, et al. Chapter: Appendix N: Technology Area (TA) 11: Modeling, Simulation, Information Technology and Processing, NASA Space Technology Roadmaps and Priorities, Restoring NASA's Technological Edge and Paving the Way for a New Era in Space; 2012. p. 282–293.
  • Belhocine A, Ghazaly NM. Effects of material properties on generation of brake squeal noise using finite element method. Latin Am J Solids Struct. 2015;12:1432–1447.
  • Waddad Y, Magnier V, Dufrenoy P, et al. A new contact model for multilayered solids with rough surfaces. Tribol Lett. 2017;65(4):1–34. doi:10.1007/s11249-017-0941-6. Springer Nature Switzerland AG.
  • Kossman S, Iost A, Chicot D, et al. Mechanical characterization by multiscale instrumented indentation of highly heterogeneous materials for braking applications. J Mater Sci. 2019;54:4647–4670.
  • Rahmoun K, Iost A, Keryvin V, et al. A multilayer model for describing hardness variations of aged porous silicon low-dielectric-constant thin films. Thin Solid Films. 2009;518:213–221.
  • Lei L, Chazot JD, Dauchez N. Inverse method for elastic properties estimation of thermo compressed sandwich structures with poroelastic materials. Appl Acoust. 2018;148:133–140.
  • Magnier V, Roubin E, Colliat JB, et al. Methodology of porosity modeling for friction pad: consequence on the squeal instability. Tribol Int. 2017;109:78–85.
  • Mallareddy T, Blaschke P, Schneider S, et al. Brake impedance test stand - modal testing of brake pads under pressurized condition using 3D SLDV and a scalable automatic modal hammer. SAE Technical Paper (2017). DOI:10.4271/2017-01-2485.
  • Li C, Fu Y, Wang B, et al. Effect of pore structure on mechanical and tribological properties of paper-based friction materials. Tribol Int. 2020;148:106307. DOI:10.1016/j.triboint.2020.106307.
  • Kurt A, Ates H. Effect of porosity on thermal conductivity of powder metal materials. Mater Des. 2007;28:230–233.
  • Kurt A, Boz M. Wear behavior of organic asbestos based and bronze based powder metal brake linings. Mater Des. 2005;26:717–721.
  • Esswein Junior JAL, Arrieche FE, Schaeffer L. Analysis of wear in organic and sintered friction materials used in small wind energy converters. Mater Res. 2008;11:269–273.
  • Lèprè N. Synthèse et élaboration d’un matériau composite pour garnitures de freins. caractérisations physico-chimique et mécanique du matériau [PHD thesis]. University of Havre; 1997
  • Wahlstrom J, Gventsadze D. A pin on disc investigation of novel nano porous composite based and conventional brake pad materials focusing on air borne wear particles. Tribol Lett. 2012;46:195–204.
  • Rouquerol F, Rouquerol J, Sing KSW, et al. Adsorption by powders and porous solids, principles, methodology and applications. 2nd ed Vol. 1Academic Press; 2012. p. 1–626. doi:10.1016/C2010-0-66232-8.
  • Yakout M, Elbestawi MA. Additive manufacturing of composite materials: an overview. 6th international conference on virtual machining process technology (VMPT); May 29–June 2 (2017); Montréal.
  • Spowart JE, Gupta N, Lehmhus D. Additive manufacturing of composites and complex materials. JOM. 2018;70:272–274.
  • Zindani D, Kumar K. An insight into additive manufacturing of fiber reinforced polymer composite. Int J Light Weight Mater Manuf. 2019;2:267–278.
  • Man Z, Wang H, He Q, et al. Friction and wear behavior of additively manufactured continuous carbon fiber reinforced PA6 composites. Compos Part B: Eng. 2021;226:109332. DOI:10.1016/j.compositesb.2021.109332.
  • Aversa A, Marchese G, Lorusso M, et al. Microstructural and mechanical characterization of aluminum matrix composites produced by laser powder Bed fusion. Adv Eng Mater. 2017;19; DOI: 10.1002/adem.201700180.
  • Blanco I. The Use of composite materials in 3D printing. J Compos Sci. 2020;4:42. DOI:10.3390/jcs4020042.
  • Alvarez P. Metal powder and Design Key elements for SLM process, Dissemination workshop of Merlin FP7 project, IK4, Lortek, Ordizia, December 2014.
  • Lin L, Ecke N, Huang M, et al. Impact of nanosilica on the friction and wear of a PEEK/CF composite coating manufactured by fused deposition modeling (FDM). Compos Part B. 2019;177:107428. DOI:10.1016/j.compositesb.2019.107428.
  • Weng Z, Wang J, Senthil T, et al. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Mater Des. 2016;102:276–283.
  • Duda T, Raghavan LV. 3D metal printing technology. IFAC-Papers On Line. 2016;49:103–110.
  • Kumar S, Kruth J-P. Composites by rapid prototyping technology. Mater Des. 2010;31:850–856.
  • Vartanian K, Brewer L, Manley K, et al. Powder bed fusion vs. directed energy deposition benchmark study: mid-size part with simple geometry. OPTOMEC report. 2018.
  • Goodridge R, Ziegelmeier S. Chapter 7: powder bed fusion of polymers, Laser additive manufacturing, materials, design, technologies, and applications. Woodhead Publishing; 2017. p.181–204. DOI:10.1016/B978-0-08-100433-3.00007-5
  • Xue L, Ul-Islam M. Laser consolidation: A novel One-step manufacturing process for making Net-shape functional components, in Cost effective manufacture via Net-shape processing France, paper 15 (2006). p. 1-14
  • Ding D, Pan Z, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81:465–481.
  • Ahmed GMS, Algarni S. Design, development and FE thermal analysis of a radially grooved brake disc developed through direct metal laser sintering. Materials. 2018;11:1211. DOI:10.3390/ma11071211
  • Mohseni H, Phipps M. Additively manufactured brake pad assembly with controlled compressibility factor, United States Patent Application No: US 2019/0101173AI, (2019).
  • Bhavar V, Kattire P, Patil V, et al. A review on powder Bed fusion technology of metal additive manufacturing. 4th international conference and exhibition on additive manufacturing technologies, September 1&2; 2014; Bangalore, India.
  • Sun S, Brandt M, Easton M. Chapter 2: Powder bed fusion processes: an overview. In: Brandt M, editor. Laser additive manufacturing: materials, design, technologies, and applications. 1st editionWoodhead Publishing; 2017. p.55–77 doi:10.1016/B978-0-08-100433-3.00002-6.
  • Manoj E, Antony Marshall R, Muthupandi K, et al. Investigation on the mechanical and tribological properties of silicon in an automotive brake pad. Mater Today Proc. 2023. ISSN 2214-7853. DOI:10.1016/j.matpr.2023.01.129
  • The brake Report: NUCAP Industries Introduces Revolutionary Galvanized NRS Brake Pads Product Line. (2019). https://thebrakereport.com/nucap-industries-introduces-revolutionary-galvanized-nrs-brake-pads-product-line/.
  • De dominicis S. European Patent application: EP 3 415 850 A1: Plant for carrying out heat treatments with controlled temperature profiles on friction elements, in particular brake pads, and associated method (2018).
  • Lagel MC, Hai L, Pizzi A, et al. Automotive brake pads made with a bioresin matrix. Ind Crops Prod. 2016;85:372–381.
  • Serrano-Munoz I, Magnier V, Mann R, et al. Original methodology using DIC to characterize friction materials compression behavior. In: Sutton M, Reu PL, editors. International digital imaging correlation society. Berlin: Springer; 2017. p. 55–58.
  • Baklouti M., Elleuch R., Cristol A.-L., 2013. Relationships between the heterogeneous microstructure, the mechanical properties and the braking behaviour of an organic brake lining material. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2013;227(4):549–560.
  • Khamlichi A, Bezzazi M, Jabbouri A, et al. Optimizing friction behavior of clutch facings using pin-on-disk test. Int J Phys Sci. 2008;3:065–070.
  • Bezzazi M, Khamlichi A, Jabbouri A, et al. Experimental characterization of frictional behaviour of clutch facings using Pin-on-disk machine. Mater Des. 2007;28:2148–2153.
  • Senthil Gavaskar S, Karthick K, Bibin C. Statistical analysis on hardness of clutch facing at various stages in clutch face manufacturing. Mater Today Proc. 2021;46:3730–3734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.