99
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluating comparative wear behaviour of Al-15%Si based alloy/composites reinforced with zinc and zirconium oxide

, , ORCID Icon, &
Pages 81-98 | Received 22 Oct 2021, Accepted 19 Apr 2022, Published online: 28 Jul 2023

References

  • Davis JR, Aluminium and its alloys. In: ASM speciality handbook. ASM International Materials Park, OH, USA; 1994. p. 351–416. doi:10.1361/autb2001p351.
  • Torabian H, Pathak JP, Tiwari SN. Wear characteristics of Al-Si alloys. Wear. 1994;172(1):49–58. doi:10.1016/0043-1648(94)90298-4
  • Clarke J, Sarkar AD. Wear characteristics of as-cast binary aluminium-silicon alloys. Wear. 1979;54(1):7–16. doi:10.1016/0043-1648(79)90044-9
  • Shabel BS, Granger DA, Truckner WG. Alcoa Technical Center. In: Blau PJ. editor. Friction and wear of aluminium-silicon alloys. ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology, p. 785–794. doi:10.1361/asmhba0002331
  • Shivanath R, Sengupta PK, Eyre TS. Wear of aluminium-silicon alloys. The British Foundrymen. 1977;70:349–356.
  • Vijesh V, Narayan prabhu K. Review of microstructure evolution in hypereutectic Al-Si alloys and its effect on wear properties. Trans Indian Inst Met. 2014;67(1):1–18. doi:10.1007/s12666-013-0327-x.
  • Goudar DM, Raju K, Srivastava VC, et al. Effect of copper and iron on the wear properties of spray formed Al–28Si alloy. Mater Des. 2013;51:383–390. doi:10.1016/j.matdes.2013.04.018
  • Pola A, Tocci M, Goodwin FE. Review of microstructures and properties of zinc alloys. Metals (Basel). 2020;10:253. doi:10.3390/met10020253
  • Çuvalcı H, Baş H. Investigation of the tribological properties of silicon containing zinc–aluminum based journal bearings. Tribol Int. 2004;37(6):433–440. doi:10.1016/j.triboint.2003.10.006.
  • Alemdag Y, Beder M. Microstructural, mechanical and tribological properties of Al-7Si-(0-5%) Zn Alloys. J. Mater Design. 2014;63:159–167. doi:10.1016/J.MATDES.2014.06.006.
  • Savaşkan T, Aydıner A. Effects of silicon content on the mechanical and tribological properties of mootectoid-based zinc–aluminium–silicon alloys. Wear. 2004;257(3):377–388. doi:10.1016/j.wear.2004.01.007.
  • Alemdag Y, Beder M. Top of form bottom of form effects of zinc content on strength and wear performance of Al−12Si−3Cu based alloy. Trans Nonferr Metal Soc China. 2019;29(12):2463–2471. doi:10.1016/S1003-6326(19)65154-X
  • Prasad BK. Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions. Wear. 2007;262(3–4):262–273. doi:10.1016/j.wear.2006.05.004.
  • Savaşkan T, Bican O. Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn–40Al–2Cu–(0–5)Si alloys. Mater Sci Eng A. 2005;404:259–269. doi:10.1016/j.msea.2005.05.078
  • Savaşkan T, Purcek G. Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear. 2002;252(9):693–703. doi:10.1016/S0043-1648(01)00876-6.
  • Nturanabo LM, Kirabira JB. Novel applications of aluminium metal matrix composites. In: Omar Cooke Kavian, editor. Aluminum alloys and compositesIntechOpen; 2019. p. 1–24. doi:10.5772/intechopen.86225.
  • Sahoo JK, Sahoo SK, Sutar H, et al. Wear behavior of Al-Si alloy based metal matrix composite reinforced with TiB2; IOP conf Ser.; 2017: Mater. Sci. Eng. 178 012025.
  • Vijaya Bhaskar K, Sundarrajan S, Subba Rao B, et al. Effect of reinforcement and wear parameters on dry sliding wear of aluminum composites – a review. Mater Today Proc. 2018;5:5891–5900. doi:10.1016/j.matpr.2017.12.188
  • Anand A, Ul Haq MI, Raina A, et al. Tribological and mechanical aspects of zirconia-reinforced aluminum metal matrix composites. Mater Focus. 2016;5:489–495. doi:10.1166/mat.2016.1346
  • Hemanth J. Development and property evaluation of aluminum alloy reinforced with nano-ZrO2 metal matrix composites (NMMCs). Mater Sci Eng A. 2009;507:110. doi:10.1016/j.msea.2008.11.039
  • Abhishek A, Siddeshwar P. Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy. Proc Mater Sci. 2015;20150:212–219. https://doi.org/10.1016/j.mspro.2015.06.043.
  • Adil Ahmed S, Prasanna Rao NS, Srinivas Murthy PL, et al. Mechanical properties of aluminium alloy Al356.2 matrix reinforced with zirconium particles. Int Res J Eng Techn (IRJET). 2015;2(4):1049–1052.
  • Arif S, Alam T, Ansari AH, et al. Study of mechanical and tribological behaviour of Al/SiC/ZrO2 hybrid composites fabricated through powder metallurgy technique. Mater Res Express. 2017;4(7):0076511. doi:10.1088/2053-1591/aa7b5f
  • Kumar R, Ramachandra Naik AL, Ahamed S, et al. Microstructure and wear properties of zirconium nano metal matrix composites. Int J Eng Sci Res Techn. 2016;5(6):1–9. doi:10.5281/zenodo.54639.
  • Patil IS, Anarghya A, Rao SS, et al. Experimental investigation and optimisation of mechanical and microstructure behaviour of stir cast and hot-pressed Al-12.5%Si-ZrO2 composites: Taguchi and Super Ranking Concept. Advan Mater Proces Techn. 2016.DOI:10.1080/2374068X.2021.1927648.
  • Patil IS, Anarghya A, Rao SS, et al. Mechanical and microstructural analysis of a AlSi-ZrO2 metal matrix composite using optimized artificial neural network and experimental data. Mater Today Commun. 2021;27:102398. doi:10.1016/j.mtcomm.2021.102398
  • Patil IS, Anarghya A, Rao SS, et al. Experimental investigation and optimisation of mechanical and microstructure behaviour of stir cast and hot-pressed Al-12.5%Si-ZrO2 composites: Taguchi and Super Ranking Concept. Adv Mater Proc Techn. 2021. doi:10.1080/2374068X.2021.1927648
  • Mamtha Ramachandra A. Hardness and wear resistance of ZrO2 nano particle reinforced Al nanocomposites produced by powder metallurgy. Proc Mater Sci. 2015;10:212–219. doi:10.1016/j.mspro.2015.06.043
  • Miloradović N, Vujanac R. Ana pavlović, wear behaviour of ZA27/SiC/graphite composites under lubricated sliding conditions. Materials (Basel). 2020;13(17):3752. doi:10.3390/ma13173752.
  • Karthikeyan G, Jinu GR. Dry sliding wear behavior op­timization of stir cast LM6 /ZrO2 composites by response surface methodology analysis. Trans Can Soc Mech Eng. 2016;40(3):351–369. doi:10.1139/tcsme-2016-0026.2
  • Omidvar H, Pabandi Hk. Effect of particle size ZrO2 in the nano and micrometer scale on wear behavior of the arbed composites Al-1%wt. ZrO2. Int J Adv Mechan Civil Eng. 2006;3(6):1–4.
  • Rasheda GM, Sadawy MM, Kandil A, et al. Influence of ZrO2 particles on the tribological properties of AlMg5 alloy. J Petrol Min Eng. 2021;23(1):95–103. doi:10.21608/jpme.2021.68312.1078
  • Parveen A, Chauhan NR, Suhaib M. Mechanical and tribological behaviour of Al-ZrO2 composites: a review. In: Prasad A, Gupta S, Tyagi R, editors. Advances in engineering design. Lecture notes in mechanical engineering. Singapore: Springer. doi:10.1007/978-981-13-6469-3_20
  • Baghchesara MA, Abdizadeh H, Baharvandi HR. Fractography of stir casted Al-ZrO2 composites. Iran J Sci Technol Trans B Eng. 2021; 33:453–462.
  • Karthikeyan G, Jinu GR. Dry sliding wear behaviour of stir cast LM 25/ZrO2 metal matrix composites. Trans. Famena. 2015b;39(4):89–98. Available from: https://hrcak.srce.hr/index.php?show = clanak&id_clanak_jezik = 223897.
  • Pul M. Effect of ZrO2 quantity on mechanical properties of ZrO2-reinforced aluminum composites produced by the vacuum infiltration technique. Revista de Metalurgia. 2021; 57(2):1–13. https://doi.org/10.3989/revmetalm.195.
  • Kumar R, Pridhar K, Sree Balaji T, et al. Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash (CSA) reinforced aluminium (Al 6082) matrix hybrid composite. J. Alloys Compd. 2018;765:171–179. doi:10.1016/j.jallcom.2018.06.177
  • Kumar A, Kumar S, Mukhopadhyay NK, et al. Effect of variation of SiC reinforcement on wear behaviour of A-Z91 alloy composites. Materials (Basel). 2021;14(4):990). doi:10.3390/ma14040990.
  • Aung N, Zhou W, Lim LEN. Wear behaviour of AZ91D alloy at low sliding speeds. Wear. 2008;265(5–6):780–786. doi:10.1016/j.wear.2008.01.012
  • Gu D, Jue J, Dai D, et al. Effects of Dry sliding conditions on wear properties of Al-matrix composites produced by selective laser melting additive manufacturing. J Tribol. 2018;140(2):021605. doi:10.1115/1.4037729
  • Dayanand MG, Alavandi MR, Saiyad Hasan SK, et al. Comparative study on wear behavior of as cast and spray cast hypereutectic Al-Si alloy. J Mech Behav Mater. 2018;27(3–4):1–13. doi:10.1515/jmbm-2018-0013
  • Alidokht SA, Abdollah-zadeh A, Soleymani S, et al. Evaluation of microstructure and wear behavior of friction stir processed cast aluminum alloy. Mater Charact. 2012;63:90–97. doi: 10.1016/2Fj.matchar.2011.11.007
  • Lijesh KP, Khonsari MM. On the modeling of adhesive wear with consideration of loading sequence. Tribol Lett. 2018;66:105. doi:10.1007/s11249-018-1058-2
  • Rabinowicz E. Wear coefficients OF metals. In: MB Peterson, WO Winer, editors. Wear control handbook. New York: The American Society of Mechanical Engineers; 1980.
  • Yang LJ. Wear coefficient equation for aluminium-based matrix composites against steel disc. Wear. 2003;255:79–592. https://doi.org/10.1016/S0043-1648(03)00191-1.
  • Karakoc H, Ovalı İ, Dündarc S, et al. Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy. J Mater Res Techn. 2019;8(6).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.