1,291
Views
12
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Fabrication of a nano-biocatalyst for regioselective acylation of arbutin

, , , , , , & show all
Pages 55-61 | Received 12 Dec 2017, Accepted 01 Feb 2018, Published online: 15 Feb 2018

References

  • Spahn, C.; Minteer, S.D. Enzyme Immobilization in Biotechnology. Recent Pat. Eng. 2008, 2 (3), 195–200. doi: 10.2174/187221208786306333
  • Cao, L. Immobilised Enzymes: Science or Art? Curr. Opin. Chem. Biol. 2005, 9 (2), 217–226. doi: 10.1016/j.cbpa.2005.02.014
  • Torres-Salas, P.; del Monte-Martinez, A.; Cutiño-Avila, B.; Rodriguez-Colinas, B.; Alcalde, M.; Ballesteros, A.O.; Plou, F.J. Immobilized Biocatalysts: Novel Approaches and Tools for Binding Enzymes to Supports. Adv. Mater. 2011, 23 (44), 5275–5282. doi: 10.1002/adma.201101821
  • Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Enzyme Immobilization: An Overview on Techniques and Support Materials. 3 Biotech. 2013, 3 (1), 1–9. doi: 10.1007/s13205-012-0071-7
  • Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42 (15), 6223–6235. doi: 10.1039/C3CS60075K
  • Eş, I.; Vieira, J.D.G.; Amaral, A.C. Principles, Techniques, and Applications of Biocatalyst Immobilization for Industrial Application. Appl. Microbiol. Biotechnol. 2015, 99 (5), 2065–2082. doi: 10.1007/s00253-015-6390-y
  • Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzyme Microb. Technol. 2007, 40 (6), 1451–1463. doi: 10.1016/j.enzmictec.2007.01.018
  • Altinkaynak, C.; Tavlasoglu, S.; ÿzdemir, N.; Ocsoy, I. A New Generation Approach in Enzyme Immobilization: Organic-inorganic Hybrid Nanoflowers with Enhanced Catalytic Activity and Stability. Enzyme Microb. Technol. 2016, 93–94, 105–112. doi: 10.1016/j.enzmictec.2016.06.011
  • Palomo, J.M.; Muñoz, G.; Fernández-Lorente, G.; Mateo, C.; Fernández-Lafuente, R.; Guisán, J.M. Interfacial Adsorption of Lipases on Very Hydrophobic Support (octadecyl–Sepabeads): Immobilization, Hyperactivation and Stabilization of the Open Form of Lipases. J. Mol. Catal., B Enzym. 2002, 19–20, 279–286. doi: 10.1016/S1381-1177(02)00178-9
  • Fernández-Lafuente, R.; Rodríguez, V.; Mateo, C.; Penzol, G.; Hernández-Justiz, O.; Irazoqui, G.; Villarino, A.; Ovsejevi, K.; Batista, F.; Guisán, J.M. Stabilization of Multimeric Enzymes via Immobilization and Post-immobilization Techniques. J. Mol. Catal., B Enzym. 1999, 7 (1–4), 181–189. doi: 10.1016/S1381-1177(99)00028-4
  • Xie, W.; Zang, X. Covalent Immobilization of Lipase Onto Aminopropyl-functionalized Hydroxyapatite-encapsulated-γ-Fe2O3 Nanoparticles: A Magnetic Biocatalyst for Interesterification of Soybean Oil. Food Chem. 2017, 227, 397–403. doi: 10.1016/j.foodchem.2017.01.082
  • Xie, W.; Zang, X. Immobilized Lipase on Core–shell Structured Fe3O4–MCM-41 Nanocomposites as a Magnetically Recyclable Biocatalyst for Interesterification of Soybean Oil and Lard. Food Chem. 2016, 194, 1283–1292. doi: 10.1016/j.foodchem.2015.09.009
  • Xie, W.; Wang, J. Enzymatic Production of Biodiesel from Soybean Oil by Using Immobilized Lipase on Fe3O4/poly (Styrene-methacrylic Acid) Magnetic Microsphere as a Biocatalyst. Energy Fuels. 2014, 28 (4), 2624–2631. doi: 10.1021/ef500131s
  • Garcia-Galan, C.; Berenguer-Murcia, Á; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353 (16), 2885–2904. doi: 10.1002/adsc.201100534
  • Ge, J.; Lei, J.; Zare, R.N. Protein–inorganic Hybrid Nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432. doi: 10.1038/nnano.2012.80
  • Yin, Y.; Xiao, Y.; Lin, G.; Xiao, Q.; Lin, Z.; Cai, Z. An Enzyme-inorganic Hybrid Nanoflower Based Immobilized Enzyme Reactor with Enhanced Enzymatic Activity. J. Mater. Chem. B. 2015, 3 (11), 2295–2300. doi: 10.1039/C4TB01697A
  • Lin, Z.; Xiao, Y.; Wang, L.; Yin, Y.; Zheng, J.; Yang, H.; Chen, G. Facile Synthesis of Enzyme-inorganic Hybrid Nanoflowers and Their Application as An Immobilized Trypsin Reactor for Highly Efficient Protein Digestion. RSC Adv. 2014, 4 (27), 13888–13891. doi: 10.1039/C4RA00268G
  • Cui, J.; Jia, S. Organic–inorganic Hybrid Nanoflowers: A Novel Host Platform for Immobilizing Biomolecules. Coord. Chem. Rev. 2017, 352, 249–263. doi: 10.1016/j.ccr.2017.09.008
  • Fernández-Lorente, G.; Palomo, J.M.; Cabrera, Z.; Guisán, J.M.; Fernández-Lafuente, R. Specificity Enhancement Towards Hydrophobic Substrates by Immobilization of Lipases by Interfacial Activation on Hydrophobic Supports. Enzyme Microb. Technol. 2007, 41 (5), 565–569. doi: 10.1016/j.enzmictec.2007.05.004
  • Fernandez-Lorente, G.; Cabrera, Z.; Godoy, C.; Fernandez-Lafuente, R.; Palomo, J.M.; Guisan, J.M. Interfacially Activated Lipases Against Hydrophobic Supports: Effect of the Support Nature on the Biocatalytic Properties. Process Biochem. 2008, 43 (10), 1061–1067. doi: 10.1016/j.procbio.2008.05.009
  • Suescun, A.; Rueda, N.; dos Santos, J.C.; Castillo, J.J.; Ortiz, C.; Torres, R.; Barbosa, O.; Fernandez-Lafuente, R. Immobilization of Lipases on Glyoxyl–octyl Supports: Improved Stability and Reactivation Strategies. Process Biochem. 2015, 50 (8), 1211–1217. doi: 10.1016/j.procbio.2015.05.010
  • Wilson, L.; Palomo, J.M.; Fernández-Lorente, G.; Illanes, A.; Guisán, J.M.; Fernández-Lafuente, R. Effect of Lipase–lipase Interactions in the Activity, Stability and Specificity of a Lipase from Alcaligenes sp. Enzyme Microb. Technol. 2006, 39 (2), 259–264. doi: 10.1016/j.enzmictec.2005.10.015
  • Wilson, L.; Palomo, J.M.; Fernández-Lorente, G.; Illanes, A.; Guisán, J.M.; Fernández-Lafuente, R. Improvement of the Functional Properties of a Thermostable Lipase from Alcaligenes sp. via Strong Adsorption on Hydrophobic Supports. Enzyme Microb. Technol. 2006, 38 (7), 975–980. doi: 10.1016/j.enzmictec.2005.08.032
  • Choudhury, P. Industrial Application of Lipase: A Review. Biopharm. 2017, 1 (2), 1–47.
  • Ghanem, A.; Aboul-Enein, H.Y. Application of Lipases in Kinetic Resolution of Racemates. Chirality. 2005, 17 (1), 1–15. doi: 10.1002/chir.20089
  • Zhang, J.; Shi, H.; Wu, D.; Xing, Z.; Zhang, A.; Yang, Y.; Li, Q. Recent Developments in Lipase-catalyzed Synthesis of Polymeric Materials. Process Biochem. 2014, 49 (5), 797–806. doi: 10.1016/j.procbio.2014.02.006
  • Aransiola, E.F.; Ojumu, T.V.; Oyekola, O.O.; Madzimbamuto, T.F.; Ikhu-Omoregbe, D.I.O. A Review of Current Technology for Biodiesel Production: State of the Art. Biomass Bioenergy. 2014, 61, 276–297. doi: 10.1016/j.biombioe.2013.11.014
  • Stergiou, P.-Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E.M. Advances in Lipase-catalyzed Esterification Reactions. Biotechnol. Adv. 2013, 31 (8), 1846–1859. doi: 10.1016/j.biotechadv.2013.08.006
  • Wu, Z.; Li, X.; Li, F.; Yue, H.; He, C.; Xie, F.; Wang, Z. Enantioselective Transesterification of (R,S)-2-pentanol Catalyzed by a New Flower-like Nanobioreactor. RSC Adv. 2014, 64 (4), 33998–34002. doi: 10.1039/C4RA04431B
  • An, B.; Fan, H.; Wu, Z.; Zheng, L.; Wang, L.; Wang, Z.; Chen, G. Ultrasound-assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-like Nanobioreactor. Molecules. 2016, 21 (5), 565. doi: 10.3390/molecules21050565
  • Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying Enzyme Activity and Selectivity by Immobilization. Chem. Soc. Rev. 2013, 42 (15), 6290–6307. doi: 10.1039/C2CS35231A
  • Jiang, L.; Xie, X.; Yue, H.; Wu, Z.; Wang, H.; Yang, F.; Wang, L.; Wang, Z. Highly Efficient and Regioselective Acylation of Arbutin Catalyzed by Lipase from Candida sp. Process Biochem. 2015, 50 (5), 789–792. doi: 10.1016/j.procbio.2015.02.014
  • Yang, W.-J.; Griffiths, P.R.; Byler, D.M.; Susi, H. Protein Conformation by Infrared Spectroscopy: Resolution Enhancement by Fourier Self-deconvolution. Appl. Spectrosc. 1985, 39 (2), 282–287. doi: 10.1366/0003702854248917
  • Yu, Y.; Fei, X.; Tian, J.; Xu, L.; Wang, X.; Wang, Y. Self-assembled Enzyme–inorganic Hybrid Nanoflowers and Their Application to Enzyme Purification. Colloids Surf., B. 2015, 130, 299–304. doi: 10.1016/j.colsurfb.2015.04.033
  • Fernandez-Lopez, L.; Pedrero, S.G.; Lopez-Carrobles, N.; Gorines, B.C.; Virgen-Ortíz, J.J.; Fernandez-Lafuente, R. Effect of Protein Load on Stability of Immobilized Enzymes. Enzyme Microb. Technol. 2017, 98, 18–25. doi: 10.1016/j.enzmictec.2016.12.002
  • Rueda, N.; dos Santos, J.; Ortiz, C.; Torres, R.; Barbosa, O.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Fernandez-Lafuente, R. Chemical Modification in the Design of Immobilized Enzyme Biocatalysts: Drawbacks and Opportunities. Chem. Rec. 2016, 16 (3), 1436–1455. doi: 10.1002/tcr.201600007
  • Zaak, H.; Siar, E.-H.; Kornecki, J.F.; Fernandez-Lopez, L.; Pedrero, S.G.; Virgen-Ortíz, J.J.; Fernandez-Lafuente, R. Effect of Immobilization Rate and Enzyme Crowding on Enzyme Stability Under Different Conditions. The Case of Lipase from Thermomyces Lanuginosus Immobilized on Octyl Agarose Beads. Process Biochem. 2017, 56, 117–123. doi: 10.1016/j.procbio.2017.02.024