12,881
Views
73
CrossRef citations to date
0
Altmetric
RESEARCH REVIEW

Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review

, &
Pages 135-157 | Received 04 Dec 2017, Accepted 16 Feb 2018, Published online: 14 Mar 2018

References

  • Environmental Protection Agency (EPA). Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990–2015. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2015 (accessed 2017).
  • Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. doi: 10.1038/nature11475
  • Budzianowski, W.M.; Postawa, K. Renewable Energy from Biogas with Reduced Carbon Dioxide Footprint: Implications of Applying Different Plant Configurations and Operating Pressures. Renew. Sust. Energ. Rev. 2017, 68, 852–868. doi: 10.1016/j.rser.2016.05.076
  • Soltanieh, A.A.; Rezaeian, M. Nuclear and Renewable Energy in Iran: Nuclear Challenges and Opportunities. Int. J.Hydrog. Energy 2017, xx, 1–5.
  • Demirbas, A. Waste Energy for Life Cycle Assessment, Chapter 2; Future Energy Sources, Green Energy and Technology;Springer International Publishing: Switzerland, 2016, doi:10.1007/978-3-319-40551-3_2.
  • Bagheri, S., Julkapli, N.M., Dabdawb, W.A.Y., Mansouri, N. Biodiesel-Derived Raw Glycerol to Value-added Products: Catalytic Conversion Approach. In Handbook of Composites from Renewable Materials, Physico-Chemical and Mechanical Characterization, 3rd ed.;Thakur, V.K., Thakur, M.K., Kessler, M.R., Eds.;John Wiley: Hoboken, NJ, 2017, pp 309–366.
  • Hajjari, M.; Ardjmand, M.; Tabatabaei, M. Experimental Investigation of the Effect of Cerium Oxide Nanoparticles as a Combustion-improving Additive on Biodiesel Oxidative Stability: Mechanism. Roy. Soc. Chem. Adv. 2014, 4 (28), 14352–14356.
  • Tabatabaei, M.; Karimi, K.; Kumar, R.; Horváth, I.S. Renewable Energy and Alternative Fuel Technologies. BioMed Res. Int. 2015, 2015, 1–2. doi: 10.1155/2015/245935
  • Johari, A.; Nyakuma, B.B.; Mohd Nor, S.H.; Mat, R.; Hashim, H.; Ahmad, A.; Yamani Zakaria, Z.; Tuan Abdullah, T.A. The Challenges and Prospects of Palm Oil Based Biodiesel in Malaysia. Energy 2015, 81, 255–261. doi: 10.1016/j.energy.2014.12.037
  • Wahab, A.G. Malaysia-Biofuels;USDA Foreign Agricultural Service, United States Department of Agriculture;Kuala Lumpur, 2012.
  • Ilham, Z.; Saka, S. Esterification of Glycerol from Biodiesel Production to Glycerol Carbonate in Non-Catalytic Supercritical Dimethyl Carbonate. Springer Plus 2016, 5, 466. doi: 10.1186/s40064-016-2643-1
  • Garlapati, V.K.; Shankar, U.; Budhiraja, A. Bioconversion Technologies of Crude Glycerol to Value Added Industrial Products. Biotechnol. Rep. 2016, 9, 9–14. doi: 10.1016/j.btre.2015.11.002
  • Anuar, M.R.; Abdullah, A.Z. Challenges in Biodiesel Industry with Regards to Feedstock, Environmental, Social and Sustainability Issues: A Critical Review. Renew. Sust. Energ. Rev. 2016, 58, 208–223. doi: 10.1016/j.rser.2015.12.296
  • Food and Agriculture Organization of the United Nations (OECD), OECD-FAO Agricultural Outlook; OECD: Paris, 2015.
  • Nanda, M.R.; Yuan, Z.; Qin, W.; Poirier, M.A.; Chunbao, X. Purification of Crude Glycerol using Acidification: Effects of Acid Types and Product Characterization. Austin J. Chem. Eng. 2014, 1 (1), 1–7.
  • Anitha, M.; Kamarudin, S.K.; Kofli, N.T. The Potential of Glycerol as a Value-Added Commodity. Chem. Eng. J. 2016, 295, 119–130. doi: 10.1016/j.cej.2016.03.012
  • Konstantinović, S.S.; Danilović, B.R.; Ćirić, J.T.; Ilić, S.B.; Savić, D.S.; Veljković, V.B. Valorization of Crude Glycerol from Biodiesel Production. Chem. Ind. Chem. Eng. Q. 2016, 22 (4), 461–489. doi: 10.2298/CICEQ160303019K
  • Jahirul, M.I.; Rasul, M.G.; Chowdhury, A.A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis -A Technological Review. Energies 2012, 5, 4952–5001. doi: 10.3390/en5124952
  • Kusuma, H.S.; Mahfud, M. Preliminary Study: Kinetics of Oil Extraction from Basil (Ocimum Basilicum) by Microwave-Assisted Hydrodistillation and Solvent-Free Microwave Extraction. S. Afr. J. Chem. Eng. 2016, 21, 49–53.
  • Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S. Palm Oil Empty Fruit Bunch Based Magnetic Biochar Composite Comparison for Synthesis by Microwave-Assisted and Conventional Heating. J. Anal. Appl. Pyrolysis 2016, 120, 521–528. doi: 10.1016/j.jaap.2016.06.026
  • Ghasali, E.; Yazdani-rad, R.; Asadian, K.; Ebadzadeh, T. Production of Al-SiC-TiC Hybrid Composites Using Pure and 1056 Aluminum Powders Prepared through Microwave and Conventional Heating Methods. J. Alloys Comp. 2017, 690, 512–518. doi: 10.1016/j.jallcom.2016.08.145
  • Pradima, J.; Kulkarni, M.R. Review on Enzymatic Synthesis of Value Added Products of Glycerol, a By-Product Derived from Biodiesel Production. Res.-Efficient Technol. 2017. doi.org/10.1016/j.reffit.2017.02.009.
  • Torres, J.J.; Rodriguez, N.E.; Arana, J.T.; Ochoa, N.A.; Marchese, J.; Pagliero, C. Ultrafiltration Polymeric Membranes for the Purification of Biodiesel from Ethanol. J. Cleaner Prod. 2017, 141, 641–647. doi: 10.1016/j.jclepro.2016.09.130
  • Motasemi, F.; Afzal, M.T. A Review on the Microwave-Assisted Pyrolysis Technique. Renewable Sustainable Energy Rev. 2013, 28, 317–330. doi: 10.1016/j.rser.2013.08.008
  • Shah, P.; Chiu, F.; Lan, J.C. Aerobic Utilization of Crude Glycerol by Recombinant Escherichia Coli for Simultaneous Production of Poly 3-Hydroxy-Butyrate and Bioethanol. Journal of Bioscience and Bioengineering 2014, 117 (3), 343–350. doi: 10.1016/j.jbiosc.2013.08.018
  • Plácido, J.; Capareda, S. Conversion of Residues and By-Products from the Biodiesel Industry into Value-Added Products. Bioresources and Bioprocessing 2016, 3, 733.
  • Sarchami, T.; Munch, G.; Johnson, E.; Kießlich, S.; Rehmann, L. A Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum. Fermentation 2016, 2, 13–13. doi: 10.3390/fermentation2020013
  • Caetano de Souza, A.C.; Silveira, J.L. Hydrogen Production Utilizing Glycerol from Renewable Feedstocks-the Case of Brazil. Renew. Sust. Energ. Rev. 2011, 15 (4), 1835–1850. doi: 10.1016/j.rser.2010.12.001
  • Menezes, A.O.; Rodrigues, M.T.; Zimmaro, A.; Borges, L.E.P.; Fraga, M.A. Production of Renewable Hydrogen from Aqueous-Phase Reforming of Glycerol over Pt Catalysts Supported on Different Oxides. Renew. Energ. 2011, 36 (2), 595–599. doi: 10.1016/j.renene.2010.08.004
  • Tuza, P.; Manfro, R.; Ribeiro, N.; Souza, M. Production of Renewable Hydrogen by Aqueous-Phase Reforming of Glycerol over Ni–Cu Catalysts Derived from Hydrotalcite Precursors. Renew. Energ. 2013, 50, 408–414. doi: 10.1016/j.renene.2012.07.006
  • Wang, C.; Dou, B.; Chen, H.; Song, Y.; Xu, Y.; Du, X.Zhang, L.; Luo, T.; Tan, C. Renewable Hydrogen Production from Steam Reforming of Glycerol by Ni–Cu–Al, Ni–Cu–Mg, Ni–Mg Catalysts. Int. J. Energ. 2013, 38 (9), 3562–3571.
  • Kamonsuangkasem, K.; Therdthianwong, S.; Therdthianwong, A. Hydrogen Production from Yellow Glycerol via Catalytic Oxidative Steam Reforming. Fuel Process Technol. 2013, 106, 695–703. doi: 10.1016/j.fuproc.2012.10.003
  • Gutiérrez Ortiz, F. J.; Ollero, P.; Serrera, A.; Galera, S. Optimization of Power and Hydrogen Production from Glycerol by Supercritical Water Reforming. Chem. Eng. J. 2013, 218, 309–318. doi: 10.1016/j.cej.2012.12.035
  • Reungsang, A.; Sittijunda, S.; O-thong, S. Bio-Hydrogen Production from Glycerol by Immobilized Enterobacter Aerogenes ATCC 13048 on Heat-Treated UASB Granules as Affected by Organic Loading Rate. Int. J. Hydrog. Energy. 2013, 38 (17), 6970–6979. doi: 10.1016/j.ijhydene.2013.03.082
  • Lin, Y. Catalytic Valorization of Glycerol to Hydrogen and Syngas. Int. J. Hydrog. Energy. 2013, 38 (6), 2678–700. doi: 10.1016/j.ijhydene.2012.12.079
  • Beatrice, C.; Di Blasio, G.; Lazzaro, M.; Cannilla, C.; Bonura, G.; Frusteri, F.; Asdrubali, F.; Baldinelli, G.; Presciutti, A.; Fantozzi, F.; Bidini, G.; Bartocci, P. Technologies for Energetic Exploitation of Biodiesel Chain Derived Glycerol: Oxy-Fuels Production by Catalytic Conversion. Appl. Energy. 2013, 102, 63–71. doi: 10.1016/j.apenergy.2012.08.006
  • Kiatkittipong, W.; Suwanmanee, S.; Laosiripojana, N.; Praserthdam, P.; Assabumrungrat, S. Cleaner Gasoline Production by Using Glycerol as Fuel Extender. Fuel Process. Technol. 2010, 91 (5), 456–460. doi: 10.1016/j.fuproc.2009.12.004
  • Rahmat, N.; Abdullah, A.Z.; Mohamed, A.R. Recent Progress on Innovative and Potential Technologies for Glycerol Transformation into Fuel Additives: A Critical Review. Renew. Sustain. Energy Rev. 2010, 14, 987–1000. doi: 10.1016/j.rser.2009.11.010
  • Ferreira, P.; Fonseca, I.M.; Ramos, A.M.; Vital, J.; Castanheiro, J.E. Esterification of Glycerol with Acetic Acid over Dodecamolybdophosphoric Acid Encaged in USY Zeolite. Catal. Commun. 2009, 10, 481–484. doi: 10.1016/j.catcom.2008.10.015
  • Gutiérrez Ortiz, F.J.; Serrera, A.; Galera, S.; Ollero, P. Methanol Synthesis from Syngas Obtained by Supercritical Water Reforming of Glycerol. Fuel. 2013, 105, 739–751. doi: 10.1016/j.fuel.2012.09.073
  • Tsang, S.C.E.; Oduru, W.O.; Redman, D.J. European Patent Application. Methanol Production Process, World Intellectual Property Organization: Geneva, Switzerland, 2009. WO130452A1.
  • Duan, S.; Chen, L.; Su, F.; Lin, J.; He, C.; Weckbecker, C. European patent Application. Oxygenated Hydrocarbon Reforming, World Intellectual Property Organization: Geneva, Switzerland, 2010. WO104467A1.
  • Posada, J.A.; Cardona, C.A. Design and Analysis of Fuel Ethanol Production from Raw Glycerol. Energy. 2010, 35 (12), 5286–5293. doi: 10.1016/j.energy.2010.07.036
  • Oh, B.R.; Seo, J.W.; Heo, S.Y.; Hong, W.K.; Luo, L.H.; Joe, M.H.; Park, D.-H.; Kim, C.H. Efficient Production of Ethanol from Crude Glycerol by a Klebsiella pneumoniae Mutant Strain. Bioresour. Technol. 2011, 102 (4), 3918–3922. doi: 10.1016/j.biortech.2010.12.007
  • Carvalho, E.R.; Schmelz-Roberts, N.S.; White, H.M.; Doane, P.H.; Donkin, S.S. Replacing Corn with Glycerol in Diets for Transition Dairy Cows. J. Dairy Sci. 2011, 94 (2), 908–916. doi: 10.3168/jds.2010-3581
  • Walter Borges de Oliveira, S.V; Leoneti, A.B.; Magrini Caldo, G.M.; Borges de Oliveira, M.M. Generation of Bioenergy and Biofertilizer on a Sustainable Rural Property. Biomass Bioenerg. 2011, 35 (7), 2608–2618. doi: 10.1016/j.biombioe.2011.02.048
  • Schieck, S.J.; Shurson, G.C.; Kerr, B.J.; Johnston, L.J. Evaluation of Glycerol, a Biodiesel Co-Product, in Grow-Finish Pig Diets to Support Growth and Pork Quality. J. Anim. Sci. 2010, 88, 3927–3935. doi: 10.2527/jas.2010-2858
  • Li, M.H.; Minchew, C.D.; Oberle, D.F.; Robinson, E.H. Evaluation of Glycerol from Biodiesel Production as a Feed Ingredient for Channel Catfish, Ictalurus Punctatus. J. World Aquaculture Society 2010, 41, 1.
  • Wang, C.; Liu, Q.; Huo, W.J.; Yang, W.Z.; Dong, K.H.; Huang, Y.X. Effects of Glycerol on Rumen Fermentation, Urinary Excretion of Purine Derivatives and Feed Digestibility in Steers. Animal Feed Sci. Technol. 2009, 121, 15–20.
  • Irieb. Vegetable glycerine, 2009. http://www.vaporden.com/notes/Vegetable Glycerin (accessed Dec 26, 2012).
  • Ning, L.; Ding, Y.; Chen, W.; Gong, L.; Lin, R.; Yuan, L.; Xin, Q. Glycerol Dehydration to Acrolein over Activated Carbon-Supported Silicotungstic Acids. Chin. J. Catal. 2008, 29, 212–214. doi: 10.1016/S1872-2067(08)60026-1
  • Rosa, D.S.; Bardi, M.A.G.; Machado, L.D.B.; Dias, D.B.; Silva, L.G.A.; Kodama, Y. Starch Plasticized with Glycerol from Biodiesel and Polypropylene Blends: Mechanical and Thermal Properties. J. Therm. Anal. Calorim. 2010, 102, 181–186. doi: 10.1007/s10973-010-0828-3
  • Lee, S.H.; Park, D.R.; Kim, H.; Lee, J.; Jung, J.C.; Woo, S.Y.; Song, W.S.; Kwon, M.S.; Song, I.K. Direct Preparation of Dichloropropanol (DCP) from Glycerol using Heteropolyacid (HPA) Catalysts: A Catalyst Screen Study. Catal. Commun. 2008, 9, 1920–1923. doi: 10.1016/j.catcom.2008.03.020
  • Pollington, S.D.; Enache, D.I.; Landon, P.; Meenakshisundaram, S.; Dimitratos, N.; Wagland, A.; Hutchings, G.J.; Stitt, E.H. Enhanced Selective Glycerol Oxidation in Multiphase Structured Reactors. Catal. Today. 2009, 145, 169–175. doi: 10.1016/j.cattod.2008.04.020
  • Chi, Z.; Pyle, D.; Wen, Z.; Frear, C.; Chen, S. A Laboratory Study of Producing Docosahexaenoic Acid from Biodiesel-Waste Glycerol by Microalgal Fermentation. Process Biochem. 2007, 42, 1537–1545. doi: 10.1016/j.procbio.2007.08.008
  • Skoulou, V.; Zabaniotou, A. Co-Gasification of Crude Glycerol with Lignocellulosic Biomass for Enhanced Syngas Production. J. Anal. Appl. Pyrolysis. 2013, 99, 110–116. doi: 10.1016/j.jaap.2012.10.015
  • Robra, S.; Serpa da cruz, R.; de Oliveira, A.M.; Neto, J.A.A.; Santos, J.V. Generation of Biogas using Crude Glycerine from Biodiesel Production as a Supplement to Cattle Slurry. Biomass Bioenerg. 2010, 34 (9), 1330–1335. doi: 10.1016/j.biombioe.2010.04.021
  • Siles, J.A.; Martín, M.A.; Chica, A.F.; Martín, A. Anaerobic Co-Digestion of Glycerol and Wastewater Derived from Biodiesel Manufacturing. Bioresour. Technol. 2010, 101 (16), 6315–6321. doi: 10.1016/j.biortech.2010.03.042
  • Fountoulakis, M.S.; Manios, T. Enhanced Methane and Hydrogen Production from Municipal Solid Waste and Agro-industrial By-products Co-Digested with Crude Glycerol. Bioresour. Technol. 2009, 100 (12), 3043–3047. doi: 10.1016/j.biortech.2009.01.016
  • Mizielińska, M.; Kowalska, U.; Łabuda, M.; Furgała, J.; Bartkowiak, A. Fed-Batch Bioconversion of Glycerol to 1,3-PD by Using Immobilized Citrobacter freundii Cells. J. Biotechnol. Biomater. 2015, 5, 3.
  • Nomanbhay, S.M.; Hussain, R. Immobilization of Escherichia Coli Mutant Strain for Efficient Production of Bioethanol from Crude Glycerol. Journal of Applied Science 2015, 15 (3), 415–430. doi: 10.3923/jas.2015.415.430
  • Đurišić-Mladenović, N.; Škrbić, B.D.; Zabaniotou, A. Chemometric Interpretation of Different Biomass Gasification Processes Based on the Syngas Quality: Assessment of Crude Glycerol Co-Gasification with Lignocellulosic Biomass. Renew. Sust. Energ Rev. 2016, 59, 649–661. doi: 10.1016/j.rser.2016.01.002
  • Dianningrum, L.W.; Choi, H.; Kim, Y.; Jung, K.-D.; Susanti, R.F.; Kim, J.; Sang, B.I. Hydrothermal Gasification of Pure and Crude Glycerol in Supercritical Water: A Comparative Study. Int. J. Hydrogen Energy. 2014, 39, 1262–1273. doi: 10.1016/j.ijhydene.2013.10.139
  • Yang, F.; Hanna, M.A.; Marx, D.B.; Sun, R. Optimization of Hydrogen Production from Supercritical water Gasification of Crude Glycerol-Byproduct of Biodiesel Production. Int. J. Energy Res. 2013, 37, 1600–1609. doi: 10.1002/er.2969
  • Wei, L.; Pordesimo, L.O.; Haryanto, A.; Wooten, J. Co-Gasification of Hardwood Chips and Crude Glycerol in a Pilot Scale Downdraft Gasifier. Bioresources Technol. 2011, 102, 6266–6272. doi: 10.1016/j.biortech.2011.02.109
  • Valliyappan, T.; Ferdous, D.; Bakhshi, N.N.; Dalai, A.K. Production of Hydrogen and Syngas via Steam Gasification of Glycerol in a Fixed-Bed Reactor. Topics Catal. 2008, 49 (1–2), 59–67. doi: 10.1007/s11244-008-9062-7
  • Cengiz, NÜ; Yıldız, G.; Sert, M.; Selvi Gökkaya, D.; Sağlam, M.; Yüksel, M.; Ballice, L. Hydrothermal Gasification of a Biodiesel by-Product Crude Glycerol in the Presence of Phosphate Based Catalysts. Int. J. Hydrogen Energy. 2015, 40 (43), 14806–14815. doi: 10.1016/j.ijhydene.2015.08.097
  • Yoon, S.J.; Choi, Y.C.; Son, Y.I.; Lee, S.H.; Lee, J.G. Gasification of Biodiesel By-Product with Air or Oxygen to make Syngas. Bioresour. Technol. 2010, 101 (4), 1227–1232. doi: 10.1016/j.biortech.2009.09.039
  • Yoon, S.-J.; Yun, Y.-M.; Seo, M.-W.; Kim, Y.-K.; Ra, H.-W.; Lee, J.-G. Hydrogen and Syngas Production from Glycerol through Microwave Plasma Gasification. Int. J. Hydrogen Energy. 2013, 38, 14559–14567. doi: 10.1016/j.ijhydene.2013.09.001
  • Marcilla, A.; Catalá, L.; García-Quesada, J.C.; Valdés, F.J.; Hernández, M.R. A Review of Thermochemical Conversion of Microalgae. Renew. Sust. Energ. Rev. 2013, 27, 11–19. doi: 10.1016/j.rser.2013.06.032
  • Dou, B.; Dupont, V.; Williams, P.T.; Chen, H.; Ding, Y. Thermogravimetric Kinetics of Crude Glycerol. Bioresour. Technol. 2009, 100, 2613–2620. doi: 10.1016/j.biortech.2008.11.037
  • Ben Hassen-Trabelsi, A.; Kraiem, T.; Naoui, S.; Belayouni, H. Pyrolysis of Waste Animal Fats in a Fixed-Bed Reactor: Production and Characterization of Bio-oil and Bio-char. Waste Manage. 2014, 34, 210–218. doi: 10.1016/j.wasman.2013.09.019
  • Jimenez-Cordero, D.; Heras, F.; Alonso-Morales, N.; Gilarranz, M.A.; Rodriguez, J.J. Porous Structure and Morphology of Granular Chars from Flash and Conventional Pyrolysis of Grape Seeds. Biomass Bioenergy 2013, 54, 123–132. doi: 10.1016/j.biombioe.2013.03.020
  • Delgado, R.; Rosas, J.G.; Gómez, N.; Martínez, O.; Sanchez, M.E.; Cara, J. Energy Valorisation of Crude Glycerol and Corn Straw by Means of Slow Co-Pyrolysis: Production and Characterisation of Gas, Char and Bio-Oil. Fuel. 2013, 112, 31–37. doi: 10.1016/j.fuel.2013.05.005
  • Manara, P.; Zabaniotou, A. Co-Pyrolysis of Biodiesel-Derived Glycerol with Greek Lignite: A Laboratory Study. J. Anal. Appl. Pyrolysis. 2013, 100, 166–172. doi: 10.1016/j.jaap.2012.12.013
  • Skoulou, V.K.; Manara, P.; Zabaniotou, A.A. H2 Enriched Fuels from Co-Pyrolysis of Crude Glycerol with Biomass. J. Anal. Appl. Pyrolysis 2012, 97, 198–204. doi: 10.1016/j.jaap.2012.05.011
  • Xiu, S.; Shahbazi, A.; Shirley, V.; Mims, M.R.; Wallace, C.W. Effectiveness and Mechanisms of Crude Glycerol on the Biofuel Production from Swine Manure through Hydrothermal Pyrolysis. J. Anal. Appl. Pyrolysis 2010, 87, 194–198. doi: 10.1016/j.jaap.2009.12.002
  • Ganesapillai, M.; Manara, P.; Zabaniotou, A. Effect of Microwave Pretreatment on Pyrolysis of Crude Glycerol–Olive Kernel Alternative Fuels. Energy Convers. Manage. 2016, 110, 287–295. doi: 10.1016/j.enconman.2015.12.045
  • Xiu, S.; Shahbazi, A. Bio-Oil Production and Upgrading Research: A Review. Renewable Sustainable Energy Rev. 2012, 16, 4406–4414. doi: 10.1016/j.rser.2012.04.028
  • Dickerson, T.; Soria, J. Catalytic Fast Pyrolysis: A Review. Energies. 2013, 6, 514–538. doi: 10.3390/en6010514
  • Duan, P.; Savage, P.E. Upgrading of Crude Algal Bio-Oil in Supercritical Water. Bioresour. Technol. 2011, 102 (2), 1899–1906. doi: 10.1016/j.biortech.2010.08.013
  • Gunawan, R.; Li, X.; Lievens, C.; Gholizadeh, M.; Chaiwat, W.; Hu, X.; Mourant, D.; Bromly, J.; Li, C.-Z. Upgrading of Bio-oil into Advanced Biofuels and Chemicals. Part I. Transformation of GC-Detectable Light Species during the Hydrotreatment of Bio-Oil Using Pd/C Catalyst. Fuel. 2013, 111, 709–717. doi: 10.1016/j.fuel.2013.04.002
  • Zhang, X.; Zhang, Q.; Wang, T.; Li, B.; Xu, Y.; Ma, L. Efficient Upgrading Process for Production of Low Quality Fuel from Bio-oil. Fuel. 2016, 179, 312–321. doi: 10.1016/j.fuel.2016.03.103
  • Umeki, E.R.; de Oliveira, C.F.; Torres, R.B.; Santos, R.G.D. Physico-Chemistry Properties of Fuel Blends Composed of Diesel and Tire Pyrolysis oil. Fuel. 2016, 185, 236–242. doi: 10.1016/j.fuel.2016.07.092
  • Gabriel, C.; Gabriel, S.; Grant, E.H.; Halstead, B.S.J.; Mingos, D.M.P. Dielectric Parameters Relevant to Microwave Dielectric Heating. Chem. Soc. Rev. 1998, 27, 213–224. doi: 10.1039/a827213z
  • Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermudez, J.M. Microwave Heating Processes Involving Carbon Materials. Fuel Process. Technol. 2010, 91, 1–8. doi: 10.1016/j.fuproc.2009.08.021
  • Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave Heating Applications in Environmental Engineering: A Review. Resour. Conserv. Recycl. 2002, 34, 75–90. doi: 10.1016/S0921-3449(01)00088-X
  • Sun, J.; Wang, W.; Yue, Q. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating strategies. Materials. 2016, 9, 231. doi: 10.3390/ma9040231
  • Surat, M.A.; Jauhari, S.; Desak, K.R. A Brief Review: Microwave Assisted Organic Reaction. J. Appl. Sci. Res. 2012, 4, 645–661.
  • Fukushima, J.; Kashimura, K.; Takayama, S.; Sato, M.; Sano, S.; Hayashi, Y.; Takizawa, H. In-Situ Kinetic Study on Non-Thermal Reduction Reaction of CuO During Microwave Heating. Matererals Lett. 2013, 91, 252–254. doi: 10.1016/j.matlet.2012.09.114
  • Xu, W.; Zhou, J.; Su, Z.; Ou, Y.; You, Z. Microwave Catalytic Effect: A New Exact Reason for Microwave-Driven Heterogeneous Gas-Phase Catalytic Reactions. Catal. Sci. Technol. 2016, 6, 698–702. doi: 10.1039/C5CY01802A
  • Zhou, J.; Xu, W.; You, Z.; Wang, Z.; Luo, Y.; Gao, L.; Yin, C.; Peng, R.; Lan, L. A New Type of Power Energy for Accelerating Chemical Reactions: The Nature of a Microwave-Driving Force for Accelerating Chemical Reactions. Scientific Reports. 2016, 6 (6), 279.
  • Saifuddin, N.; Ong, M.Y. A Review of Microwave-assisted Reactions for Biodiesel Production. Bioengineering. 2017, 4 (2), 57. doi: 10.3390/bioengineering4020057
  • Ingole, P.M.; Ranveer, A.C.; Deshmukh, S.M.; Deshmukh, S.K. Microwave Assisted Pyrolysis of Biomass: A review. Int. J. Adv. Technol. Eng. Sci. 2016, 4 (6), 78–84.
  • Salema, A.A.; Ani, F.N. Pyrolysis of Oil Palm Empty Fruit Bunch Biomass Pellets Using Multimode Microwave Irradiation. Bioresour. Technol. 2012, 125, 102–107. doi: 10.1016/j.biortech.2012.08.002
  • Wan, Y.; Chen, P.; Zhang, B.; Yang, C.; Liu, Y.; Lin, X.; Ruan, R. Microwave Assisted Pyrolysis of Biomass: Catalysts to Improve Product Selectivity. J. Anal. Appl. Pyrolysis 2009, 86 (1), 161–167. doi: 10.1016/j.jaap.2009.05.006
  • Kuan, W.-H.; Huang, Y.-F.; Chang, C.-C.; Lo, S.-L. Catalytic Pyrolysis of Sugarcane Bagasse by Using Microwave Heating. Bioresour. Technol. 2013, 146, 324–329. doi: 10.1016/j.biortech.2013.07.079
  • Zhang, B.; Zhong, Z.; Chen, P.; Ruan, R. Microwave-Assisted Catalytic Fast Pyrolysis of Biomass for Bio-Oil Production Using Chemical Vapour Deposition Modified HZSM-5 Catalyst. Bioresour. Technol. 2015, 197, 79–84. doi: 10.1016/j.biortech.2015.08.063
  • Menéndez, J.A.; Domínguez, A.; Fernandez, Y.; Pis, J.J. Evidence of Self-Gasification During the Microwave-Induced Pyrolysis of Coffee Hulls. Energy Fuels. 2007, 21, 373–378. doi: 10.1021/ef060331i
  • Nomanbhay, S.; Salman, B.; Hussain, R.; Ong, M.Y. Microwave Pyrolysis of Lignocellulosic Biomass – a Contribution to Power Africa. Energy, Sustainability and Society. 2017, 7 (23), 1–24.
  • Miura, M.; Kaga, H.; Sakurai, A.; Kakuchi, T.; Takahashi, K. Rapid Pyrolysis of Wood Block by Microwave Heating. J. Anal. Appl. Pyrolysis. 2004, 71, 187–199. doi: 10.1016/S0165-2370(03)00087-1
  • Chen, M.Q.; Wang, J.; Zhang, M.X.; Chen, M.G.; Zhu, X.F.; Min, F.F.; Tan, Z.C. Catalytic Effects of Eight Inorganic Additives on Pyrolysis of Pine Wood Sawdust by Microwave Heating. J. Anal. Appl. Pyrolysis. 2008, 82, 145–150. doi: 10.1016/j.jaap.2008.03.001
  • Wang, X.H.; Chen, H.P.; Luo, K.; Shao, J.G.; Yang, H.P. The Influence of Microwave Drying on Biomass Pyrolysis. Energy Fuels 2008, 22, 67–74. doi: 10.1021/ef700300m
  • Huang, Y.F.; Kuan, W.H.; Lo, S.L.; Lin, C.F. Total Recovery of Resources and Energy from Rice Straw using Microwave-induced Pyrolysis. Bioresour. Technol. 2008, 99, 8252–8258. doi: 10.1016/j.biortech.2008.03.026
  • Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Breeden, S.W.; Wilson, A.J.; Macquarrie, D.J.; Milkowski, K.; Jones, J.; Bridgeman, T.; Ross, A. The Preparation of High-Grade Bio-oils through the Controlled, Low Temperature Microwave Activation of Wheat Straw. Bioresour. Technol. 2009, 100 (23), 6064–6068. doi: 10.1016/j.biortech.2009.06.068
  • Salema, A.A.; Ani, F.N. Microwave Induced Pyrolysis of Oil Palm Biomass. Bioresour. Technol. 2011, 102, 3388–3395. doi: 10.1016/j.biortech.2010.09.115
  • Suriapparao, D.V.; Pradeep, N.; Vinu, R. Bio-oil Production from Prosopis Juliflora via Microwave Pyrolysis. Energy Fuels. 2015, 29 (4), 2571–2581. doi: 10.1021/acs.energyfuels.5b00357
  • Shang, H.; Lu, R.-R.; Shang, L.; Zhang, W.-H. . Effect of Additives on the Microwave-Assisted Pyrolysis of Sawdust. Fuel Process. Technol. 2015, 131, 167–174. doi: 10.1016/j.fuproc.2014.11.025
  • Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renewable Sustainable Energy Rev. 2016, 57, 1126–1140. doi: 10.1016/j.rser.2015.12.185
  • Borges, F.C.; Du, Z.; Xie, Q.; Trierweiler, J.O.; Cheng, Y.; Wan, Y.; Liu, Y.; Zhu, R.; Lin, X.; Chen, P.; Ruan, R. Fast Microwave Assisted Pyrolysis of Biomass using Microwave Absorbent. Bioresour. Technol. 2014, 156, 267–274. 110. doi: 10.1016/j.biortech.2014.01.038
  • Omar, R.; Idris, A.; Yunus, R.; Khalid, K.; Aida Isma, M.I. Characterization of Empty Fruit Bunch for Microwave-assisted Pyrolysis. Fuel 2011, 90 (4), 1536–1544. doi: 10.1016/j.fuel.2011.01.023
  • Motasemi, F.; Ani, F.N. A Review on Microwave-assisted Production of Biodiesel. Renew. Sust. Energ. Rev. 2012, 16 (7), 4719–4733. doi: 10.1016/j.rser.2012.03.069
  • Budarin, V.L.; Shuttleworth, P.S.; De bruyn, M.; Farmer, T.J.; Gronnow, M.J.; Pfaltzgraff, L.; Macquarrie, D.J.; Clark, J.H. The Potential of Microwave Technology for the Recovery, Synthesis and Manufacturing of Chemicals from Bio-Wastes. Catalysis Today. 2015, 239, 80–89. doi: 10.1016/j.cattod.2013.11.058
  • Mamaeva, A.; Tahmasebi, A.; Tian, L.; Yu, J. Microwave-Assisted Catalytic Pyrolysis of Lignocellulosic Biomass for Production of Phenolic-Rich Bio-oil. Bioresour. Technol. 2016, 211, 382–389. doi: 10.1016/j.biortech.2016.03.120
  • Mohamed, B.A.; Kim, C.S.; Ellis, N.; Bi, X. Microwave-Assisted Catalytic Pyrolysis of Switchgrass for Improving Bio-Oil and Biochar Properties. Bioresour. Technol. 2016, 201, 121–132. doi: 10.1016/j.biortech.2015.10.096
  • Liu, H.; Ma, X.; Li, L.; Hu, Z.; Guo, P.; Jiang, Y. The Catalytic Pyrolysis of Food Waste by Microwave Heating. Bioresour. Technol. 2014, 166, 45–50. doi: 10.1016/j.biortech.2014.05.020
  • Li, L.; Ma, X.; Xu, Q.; Hu, Z. Influence of Microwave Power, Metal Oxides and Metal Salts on the Pyrolysis of Algae. Bioresour. Technol. 2013, 142, 469–474. doi: 10.1016/j.biortech.2013.05.080
  • Yu, Y.; Yu, J.; Sun, B.; Yan, Z. Influence of Catalyst Types on the Microwave-induced Pyrolysis of Sewage Sludge. J. Anal. Appl. Pyrolysis. 2014, 106, 86–91. doi: 10.1016/j.jaap.2014.01.003
  • Hascakir, B.; Akin, S. Recovery of Turkish Oil Shales by Electromagnetic Heating and Determination of the Dielectric Properties of Oil Shales by an Analytical Method. Energy Fuels. 2010, 24 (1), 503–509. doi: 10.1021/ef900868w
  • Du, Z.; Hu, B.; Ma, X.; Cheng, Y.; Liu, Y.; Lin, X.; Wan, Y.; Lei, H.; Chen, P.; Ruan, R. Catalytic Pyrolysis of Microalgae and Their Three Major Components: Carbohydrates, Proteins, and Lipids. Bioresour. Technol. 2013, 130, 777–782. doi: 10.1016/j.biortech.2012.12.115
  • Farag, S.; Fu, D.; Jessop, P.G.; Chaouki, J. Detailed Compositional Analysis and Structural Investigation of a Bio-Oil from Microwave Pyrolysis of Kraft Lignin. J. Anal. Appl. Pyrolysis. 2014, 109, 249–257. doi: 10.1016/j.jaap.2014.06.005
  • Mašek, O.; Budarin, V.; Gronnow, M.; Crombie, K.; Brownsort, P.; Fitzpatrick, E.; Hurst, P. Microwave and Slow Pyrolysis Biochar-comparison of Physical and Functional Properties. J. Anal. Appl. Pyrolysis. 2013, 100, 41–48. doi: 10.1016/j.jaap.2012.11.015
  • Suriapparao, D.V.; Vinu, R. Bio-Oil Production via Catalytic Microwave Pyrolysis of Model Municipal Solid Waste Component Mixtures. Royal Society of Chemistry Advances. 2015, 5 (71), 57619–57631.
  • Patil, P.; Reddy, H.; Muppaneni, T.; Ponnusamy, S.; Sun, Y.; Dailey, P.; Cooke, P.; Patil, U.; Deng, S. Optimization of Microwave-Enhanced Methanolysis of Algal Biomass to Biodiesel Under Temperature Controlled Conditions. Bioresour. Technol. 2013, 137, 278–285. doi: 10.1016/j.biortech.2013.03.118
  • Wang, N.; Tahmasebi, A.; Yu, J.; Xu, J.; Huang, F.; Mamaeva, A. A Comparative Study of Microwave-Induced Pyrolysis of Lignocellulosic and Algal Biomass. Bioresour. Technol. 2015, 190, 89–96. doi: 10.1016/j.biortech.2015.04.038
  • Beneroso, D.; Bermúdez, J.; Arenillas, A.; Menéndez, J. Microwave Pyrolysis of Microalgae for High Syngas Production. Bioresour. Technol. 2013, 144, 240–246. doi: 10.1016/j.biortech.2013.06.102
  • Bermúdez, J.M.; Francavilla, M.; Calvo, E.G.; Arenillas, A.; Franchi, M.; Menéndez, J.A.; Luque, R. Microwave-induced Low Temperature Pyrolysis of Macroalgae for Unprecedented Hydrogen-Enriched Syngas Production. R. Soc. Chem. Adv. 2014, 4 (72), 38144–38151.
  • Ferrera-Lorenzo, N.; Fuente, E.; Bermúdez, J.; Suárez-Ruiz, I.; Ruiz, B. Conventional and Microwave Pyrolysis of a Macroalgae Waste from the Agar-Agar Industry, Prospects for Bio-Fuel Production. Bioresour. Technol. 2014, 151, 199–206. doi: 10.1016/j.biortech.2013.10.047
  • Undri, A.; Rosi, L.; Frediani, M.; Frediani, P. Microwave Assisted Pyrolysis of Corn Derived Plastic Bags. J. Anal. Appl. Pyrolysis 2014, 108, 86–97. doi: 10.1016/j.jaap.2014.05.013
  • Bartoli, M.; Rosi, L.; Frediani, M.; Undri, A.; Frediani, P. Depolymerization of Polystyrene at Reduced Pressure through a Microwave Assisted Pyrolysis. J. Anal. Appl. Pyrolysis 2015, 113, 281–287. doi: 10.1016/j.jaap.2015.01.026
  • Yang, A.L.C.; Ani, F.N. Controlled Microwave-Induced Pyrolysis of Waste Rubber Tires. Int. J. Technol. 2016, 7 (2), 314–322. doi: 10.14716/ijtech.v7i2.2973
  • Leong, S.K.; Ani, F.N.; Chong, C.T. Production of Syngas from Controlled Microwave Assisted Pyrolysis of Crude Glycerol. Key Eng. Mater. 2016, 723, 584–588. doi: 10.4028/www.scientific.net/KEM.723.584
  • Valliyappan, T.; Bakhshi, N.N.; Dalai, A.K. Pyrolysis of Glycerol for the Production of Hydrogen or Syngas. Bioresour. Technol. 2008, 99, 4476–83. doi: 10.1016/j.biortech.2007.08.069
  • Fernández, Y.; Arenillas, A.; Díez, M.A.; Pis, J.J.; Menéndez, J.A. Pyrolysis of Glycerol Over Activated Carbons For Syngas Production. J. Anal. Appl. Pyrolysis 2009, 84 (2), 145–150. doi: 10.1016/j.jaap.2009.01.004
  • Fernández, Y.; Arenillas, A.; Bermúdez, J.M.; Menéndez, J.A. Comparative Study of Conventional and Microwave-Assisted Pyrolysis, Steam and Dry Reforming of Glycerol for Syngas Production, Using a Carbonaceous Catalyst. J. Anal. Appl. Pyrolysis. 2010, 88, 155–159. doi: 10.1016/j.jaap.2010.03.009
  • Qadariyah, L.; Mahfud, M.; Prihatini, P.; Hadi, S.; Kurniati, Y. The Pyrolysis of Glycerol Using Microwave for the Production of Hydrogen. Mod. Appl. Sci. 2015, 9 (7), 74–79. doi: 10.5539/mas.v9n7p74
  • Leong, S.K.; Lam, S.S.; Ani, F.N.; Ng, J.H.; Chong, C.T. Production of Pyrolyzed Oil from Crude Glycerol Using a Microwave Heating Technique. Int. J. Technol. 2016, 7 (2), 323–331. doi: 10.14716/ijtech.v7i2.2979
  • Bridgwater, A.V.; Meier, D.; Radlein, D. An Overview of Fast Pyrolysis of Biomass. Org. Geochem. 1999, 30 (12), 1479–1493. doi: 10.1016/S0146-6380(99)00120-5
  • Domínguez, A.; Menéndez, J.A.; Fernández, Y.; Pis, J.J.; Nabais, J.M.V.; Carrott, P.J.M.; Carrott, M.M.L.R. Conventional and Microwave Induced Pyrolysis of Coffee Hulls for the Production of a Hydrogen Rich Fuel Gas. J. Anal. Appl. Pyrolysis. 2007, 79, 128–135. doi: 10.1016/j.jaap.2006.08.003
  • Khaghanikavkani, E.; Farid, M.M. Thermal Pyrolysis of Polyethylene: Kinetic Study. Energy Sci. Technol. 2011, 2 (1), 1–10.
  • Ng, J.H.; Leong, S.W.; Lam, S.S.; Ani, F.N.; Chong, C.T. Microwave-assisted and Carbonaceous Catalytic Pyrolysis of Crude Glycerol from Biodiesel Waste for Energy production. Energy Convers. Manage. 2017, 143, 399–409. doi: 10.1016/j.enconman.2017.04.024
  • Huang, Y.F.; Chiueh, P.T.; Lo, S.L. A Review on Microwave Pyrolysis of Lignocellulosic Biomass. Sust. Environ. Rev. 2016, 26, 103–109.
  • Namazi, A.B.; Allen, D.G.; Jia, C.Q. Probing Microwave Heating of Lignocellulosic Biomasses. J. Anal. Appl. Pyrolysis 2015, 112, 121–128. doi: 10.1016/j.jaap.2015.02.009
  • Salema, A.A.; Afzal, M.T. Numerical Simulation of Heating Behaviour in Biomass bed and Pellets under Multimode Microwave System. International Journal of Thermal Science. 2015, 91, 12–24. doi: 10.1016/j.ijthermalsci.2015.01.003
  • Yu, F.; Deng, S.; Chen, P.; Liu, Y.; Wan, Y.; Olson, A.; Kittelson, D.; Ruan, R. Physical and Chemical Properties of Bio-oils from Microwave Pyrolysis of Corn Stover. Applied Biochemistry and Biotechnology 2007, 137–140 (1–12), 957–970. doi: 10.1007/s12010-007-9111-x
  • Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels. 2004, 18, 590–598. doi: 10.1021/ef034067u
  • Li, H.; Qu, Y.; Xu, J. Microwave-Assisted Conversion of Lignin. In Production of Biofuels and Chemicals with Microwave; Fang, Z., Smith, J.L.R., Qi, X. Eds.; Springer: Dordrecht, 2015; pp 61–82.
  • Chen, P., Xie, Q., Du, Z., Borges, F.C., Peng, P., Cheng, Y., Wan, Y., Lin, X., Liu, Y., Ruan, R. Microwave-assisted Thermochemical Conversion of Biomass for Biofuel Production. In Production of Biofuels and Chemicals with Microwave; Fang, Z., Smith, J.L.R., Qi, X. Eds.; Springer: Dordrecht, 2015; pp 83–98.
  • Zhang, X.; Lei, H.; Wang, L.; Zhu, L.; Wei, Y.; Liu, Y.; Yadavalli, G.; Yan, D. Renewable Gasoline-Range Aromatics and Hydrogen-enriched Fuel Gas from Biomass via Catalytic Microwave-induced Pyrolysis. Green Chem. 2015, 17, 4029–4036. doi: 10.1039/C5GC00516G
  • Luque, R.; Menéndez, J.A.; Arenillas, A.; Cot, J. Microwave-Assisted Pyrolysis of Biomass Feedstocks: The Way Forward. Energy Environ. Sci. 2012, 5 (2), 5481–5488. doi: 10.1039/C1EE02450G
  • Macquarrie, D.J.; Clark, J.H.; Fitzpatrick, E. The Microwave Pyrolysis of Biomass. Biofuels, Bioprod. Biorefin. 2012, 6 (5), 549–560. doi: 10.1002/bbb.1344
  • Lehto, J.; Oasmaa, A.; Solantausta, Y.; Kytö, M.; Chiaramonti, D. Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-oils. VTT Technol. 2013, 87, 79.
  • Hou, S.-S.; Huang, W.-C.; Rizal, F.M.; Lin, T.-H. Co-Firing of Fast Pyrolysis Bio-oil and Heavy Fuel Oil in a 300-kWth Furnace. Appl. Sci. 2016, 6, 326. doi: 10.3390/app6110326
  • Zheng, J.L.; Kong, Y.P. Spray Combustion Properties of Fast Pyrolysis Bio-oil Produced from Rice Husk. Energy Convers. Manage. 2010, 51, 182–188. doi: 10.1016/j.enconman.2009.09.010
  • Krutof, A.; Hawboldt, K. Blends of Pyrolysis Oil, Petroleum, and other Bio-Based Fuels: A Review. Renew. Sust. Energ. Rev. 2016, 59, 406–419. doi: 10.1016/j.rser.2015.12.304
  • ASTM D 7544. Standard Specification for Pyrolysis Liquid Biofuel;American Society for Testing and Materials: Easton, MD, 2012.
  • Bühler, W.; Dinjus, E.; Ederer, H.J.; Kruse, A.; Mas, C. Ionic Reactions and Pyrolysis of Glycerol as Competing Reaction Pathways in Near- and Supercritical Water. The Journal of Supercritical Fluids. 2002, 22, 37–53. doi: 10.1016/S0896-8446(01)00105-X
  • Antal, M.J.; Mok, W.S.L.; Roy, J.C.; Raissi, A.T.; Anderson, D.G.M. Pyrolytic Sources of Hydrocarbons, From Biomass. J. Anal. Appl. Pyrolysis 1985, 8, 291–303. doi: 10.1016/0165-2370(85)80032-2
  • Yaws, C.L. Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety and Health related properties for Organic and Inorganic Chemicals, McGraw-Hill: New York, USA, 1999.
  • Järvik, O.; Oja, V. Molecular Weight Distributions and Average Molecular Weights of Pyrolysis Oils from Oil Shales: Literature Data and Measurements by Size Exclusion Chromatography (SEC) and Atmospheric Solids Analysis Probe Mass Spectroscopy (ASAP MS) for Oils from Four Different Deposits. Energy Fuels 2017, 31 (1), 328–339. doi: 10.1021/acs.energyfuels.6b02452
  • Ciriminna, R.; Della Pinna, C.; Rossi, M.; Pagliaro, M. Understanding the Glycerol Market. Eur. J. Lipid Sci. Technol. 2014, 116 (10), 1432–1439. doi: 10.1002/ejlt.201400229
  • Shemfe, M.B.; Gu, S.; Ranganathan, P. Techno-economic Performance Analysis of Biofuel Production and Miniature Electric Power Generation from Biomass Fast Pyrolysis and Bio-oil Upgrading. Fuel. 2015, 143, 361–372. doi: 10.1016/j.fuel.2014.11.078
  • Thomas, J.M. Heterogeneous Catalysis and the Challenges of Powering the Planet, Securing Chemicals for Civilised Life, and Clean Efficient Utilization of Renewable Feedstocks. ChemSusChem. 2014, 7 (7), 1801–1832. doi: 10.1002/cssc.201301202
  • ICIS. Propylene Prices and Pricing Information 2014 [cited November, 2017]; https://www.icis.com/chemicals/propylene/.
  • Oleo Line, the Dependent Oleo Reporter, Oleo Line Glycerine Market Report 2017, No 117, 2, http://www.hbint.com/datas/media/590204fd077a6e381ef1a252/sample-quarterly-glycerine.pdf.
  • U.S. Department of Energy. How to Calculate the True Cost of Steam, Industrial Technologies Program Energy Efficiency and Renewable Energy, Washington, DC, 2003.
  • U.S. Energy Information Administration (EIA). Electric Power Monthly with Data for July 2017. In dependent Statistics & Analysis;U.S. Department of Energy: Washington, DC, 20585, 2017.
  • Liu, L.; Ye, X.P.; Bozell, J.J. A Comparative Review of Petroleum-Based and Bio-Based Acrolein Production. ChemSusChem. 2012, 5 (7), 1162–1180. doi: 10.1002/cssc.201100447
  • Wang, L., Lei, H., Ruan, R.: Techno-Economic Analysis of Microwave-Assisted Pyrolysis for Production of Biofuels. In: Production of Biofuels and Chemicals with Microwave;Fang, Z., Smith, J.L.R., Qi, X. Eds.;Springer: Dordrecht, 2015; pp 251–263.
  • Zhao, X.; Zhang, J.; Song, Z.; Liu, H.; Li, L.; Ma, C. Microwave Pyrolysis of Straw Bale and Energy Balance Analysis. J. Anal. Appl. Pyrolysis 2011, 92, 43–49. doi: 10.1016/j.jaap.2011.04.004
  • Stals, M.; Carleer, R.; Reggers, G.; Schreurs, S.; Yperman, J. Flash Pyrolysis of Heavy Metal Contaminated Hardwoods from Phytoremediation: Characterisation of Biomass, Pyrolysis Oil and Char/Ash Fraction. J. Anal. Appl. Pyrolysis 2010, 89, 22–29. doi: 10.1016/j.jaap.2010.05.001