3,544
Views
66
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals

ORCID Icon, , , , , ORCID Icon & show all
Pages 166-175 | Received 17 Dec 2017, Accepted 28 Feb 2018, Published online: 14 Mar 2018

References

  • Gharagozlou, M.; Bayati, R. Photocatalytic Characteristics of Single Phase Fe-Doped Anatase TiO2 Nanoparticles Sensitized with Vitamin B12. Mater. Res. Bull. 2015, 61, 340–347. doi: 10.1016/j.materresbull.2014.10.043
  • Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor Heterojunction Photocatalysts: Design, Construction, and Photocatalytic Performances. Chem. Soc. Rev. 2014, 43, 5234–5244. doi: 10.1039/C4CS00126E
  • Krýsa, J.; Keppert, M.; Jirkovský, J.; Štengl, V.; Šubrt, J. The Effect of Thermal Treatment on the Properties of TiO2 Photocatalyst. Mater. Chem. Phys. 2004, 86, 333–339. doi: 10.1016/j.matchemphys.2004.03.021
  • Kaviyarasu, K.; Kotsedi, L.; Simo, A.; Fuku, X.; Mola, G.T.; Kennedy, J.; Maaza, M. Photocatalytic Activity of ZrO2 Doped Lead Dioxide Nanocomposites: Investigation of Structural and Optical Microscopy of RhB Organic Dye. Appl. Surf. Sci. 2017, 421, 234–239. doi: 10.1016/j.apsusc.2016.11.149
  • Wang, W.; Ye, Y.; Feng, J.; Chi, M.; Guo, J.; Yin, Y. Enhanced Photoreversible Color Switching of Redox Dyes Catalyzed by Barium-Doped TiO2 Nanocrystals. Angew. Chem. Int. Ed. 2015, 127, 1337–1342. doi: 10.1002/ange.201410408
  • Molaei, R.; Bayati, M.R.; Alipour, H.M.; Nori, S.; Narayan, J. Enhanced Photocatalytic Efficiency in Zirconia Buffered n-NiO/p-NiO Single Crystalline Heterostructures by Nanosecond Laser Treatment. J. Appl. Phys. 2013, 113, 233708. doi: 10.1063/1.4811540
  • Krishnakumar, S.; Liberati, M.; Grazioli, C.; Veronese, M.; Turchini, S.; Luches, P.; Valeri, S.; Carbone, C. Magnetic Linear Dichroism Studies of In Situ Grown NiO Thin Films. J. Magn. Magn. Mater. 2007, 310, 8–12. doi: 10.1016/j.jmmm.2006.07.020
  • Ni, S.; Li, T.; Yang, X. Fabrication of NiO Nanoflakes and Its Application in Lithium Ion Battery. Mater. Chem. Phys. 2012, 132, 1108–1111. doi: 10.1016/j.matchemphys.2011.12.082
  • Zhao, J.; Liu, H.; Zhang, Q. Preparation of NiO Nanoflakes Under Different Calcination Temperatures and their Supercapacitive and Optical Properties. Appl. Surf. Sci. 2017, 392, 1097–1106. doi: 10.1016/j.apsusc.2016.09.128
  • Zhang, Y.; Zeng, W. New Insight into Gas Sensing Performance of Nanoneedle-Assembled and Nanosheet-Assembled Hierarchical NiO Nanoflowers. Mater. Lett. 2017, 195, 217–219. doi: 10.1016/j.matlet.2017.02.124
  • Wu, B.T.; Qiu, J.R.; Wu, E.; Zeng, H.P. Broadband Near-Infrared Luminescence from Transparent Glass–Ceramics Containing Ni2+-Doped SrTiO3 Nanocrystals. Opt. Mater. 2013, 35, 983–987. doi: 10.1016/j.optmat.2012.12.004
  • Borgström, M.; Blart, E.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A.; Hammarström, L.; Odobel, F. Sensitized Hole Injection of Phosphorus Porphyrin into NiO: Toward New Photovoltaic Devices. J. Phys. Chem. B. 2005, 109, 22928–22934. doi: 10.1021/jp054034a
  • Wang, X.; Wan, L.; Yu, T.; Zhou, J.; Guana, J.; Yu, Z.; Li, Z.; Zou, Z. Non-Basic Solution Eco-Routes to Nano-Scale NiO with Different Shapes: Synthesis and Application. Mater. Chem. Phys. 2011, 126, 494–499. doi: 10.1016/j.matchemphys.2011.01.040
  • Dorneanu, P.P.; Airinei, A.; Olaru, N.; Homocianu, M.; Nica, V.; Doroftei, F. Preparation and Characterization of NiO, ZnO and NiO–ZnO Composite Nanofibers by Electrospinning Method. Mater. Chem. Phys. 2014, 148, 1029–1035. doi: 10.1016/j.matchemphys.2014.09.014
  • Sankar, S.; Sharma, S.K.; An, N.; Lee, H.; Kima, D.Y.; Im, Y.B.; Cho, Y.D.; Ganesh, R. S.; Ponnusamy, S.; Raji, P.; Purohit, L.P. Photocatalytic Properties of Mn-Doped NiO Spherical Nanoparticles Synthesized from Sol-Gel Method. Optik – Int. J. Light Electron. Opt. 2016, 127, 10727–10734. doi: 10.1016/j.ijleo.2016.08.126
  • Qing, Z.; Haixia, L.; Huali, L.; Yu, L.; Huayong, Z.; Tianduo, L. Solvothermal Synthesis and Photocatalytic Properties of NiO Ultrathin Nanosheets with Porous Structure. Appl. Surf. Sci. 2015, 328, 525–530. doi: 10.1016/j.apsusc.2014.12.077
  • Motevalli, K.; Zarghami, Z.; Panahi-Kalamuei, M. Simple, Novel and Low-Temperature Synthesis of rod-Like NiO Nanostructure via Thermal Decomposition Route Using a New Starting Reagent and Its Photocatalytic Activity Assessment. J. Mater. Sci.: Mater. Electron. 2016, 27, 4794–4799.
  • Nassar, M.Y.; Aly, H.M.; Abdelrahman, E.A.; Moustafa, M.E. Synthesis, Characterization, and Biological Activity of Some Novel Schiff Bases and Their Co(II) and Ni(II) Complexes: A New Route for Co3O4 and NiO Nanoparticles for Photocatalytic Degradation of Methylene Blue Dye. J. Mol. Struct. 2017, 1143, 462–471. doi: 10.1016/j.molstruc.2017.04.118
  • Gnanasekaran, L.; Hemamalini, R.; Saravanan, R.; Ravichandran, K.; Gracia, F.; Agarwal, S.; Gupta, V.K. Synthesis and Characterization of Metal Oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) Nanoparticles as Photo Catalysts for Degradation of Textile Dyes. J. Photochem. Photobiol., B. 2017, 173, 43–49. doi: 10.1016/j.jphotobiol.2017.05.027
  • Ezhilarasi, A.A.; Vijaya, J.J.; Kaviyarasu, K.; Maaza, M.; Ayeshamariam, A.; John Kennedy, L. Green Synthesis of NiO Nanoparticles Using Moringa Oleifera Extract and Their Biomedical Applications: Cytotoxicity Effect of Nanoparticles Against HT-29 Cancer Cells. J. Photochem. Photobiol., B. 2016, 164, 352–360. doi: 10.1016/j.jphotobiol.2016.10.003
  • Nasseri, M.A.; Ahrari, F.; Zakerinasab, B. A Green Biosynthesis of NiO Nanoparticles Using Aqueous Extract of Tamarix Serotina and Their Characterization and Application. Appl. Organomet. Chem. 2016, 30, 978–984. doi: 10.1002/aoc.3530
  • Sone, B.T.; Fuku, X.G.; Maaza, M. Physical & Electrochemical Properties of Green Synthesized Bunsenite NiO Nanoparticles via Callistemon Viminalis’ Extracts. Int. J. Electrochem. Sci. 2016, 11, 8204–8220. doi: 10.20964/2016.10.17
  • Thema, F.T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single Phase Bunsenite NiO Nanoparticles Green Synthesis by Agathosma Betulina Natural Extract. J. Alloys. Compd. 2016, 657, 655–661. doi: 10.1016/j.jallcom.2015.09.227
  • Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous Photocatalytic Oxidation of Aromatic Compounds on TiO2. Nature 1981, 293, 206–208. doi: 10.1038/293206a0
  • Roy, P.; Berger, S.; Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939. doi: 10.1002/anie.201001374
  • Wan, X.; Yuan, M.; Tie, S.-L.; Lan, S. Effects of Catalyst Characters on the Photocatalytic Activity and Process of NiO Nanoparticles in the Degradation of Methylene Blue. Appl. Surf. Sci. 2013, 277, 40–46. doi: 10.1016/j.apsusc.2013.03.126
  • Marien, C.B.D.; Cottineau, T.; Robert, D.; Drogui, P. TiO2 Nanotube Arrays: Influence of Tube Length on the Photocatalytic Degradation of Paraquat. Appl. Catal., B. 2016, 194, 1–6. doi: 10.1016/j.apcatb.2016.04.040
  • Abou-Gamra, Z.M.; Ahmed, M.A. Synthesis of Mesoporous TiO2–Curcumin Nanoparticles for Photocatalytic Degradation of Methylene Blue dye. J. Photochem. Photobiol., B. 2016, 160, 134–141. doi: 10.1016/j.jphotobiol.2016.03.054
  • Wang, W.; Ye, M.; He, L.; Yin, Y. Nanocrystalline TiO2-Catalyzed Photoreversible Color Switching. Nano. Lett. 2014, 14, 1681–1686. doi: 10.1021/nl500378k
  • Han, D.; Jiang, B.; Feng, J.; Yin, Y.; Wang, W. Photocatalytic Self-Doped SnO2−x Nanocrystals Drive Visible-Light-Responsive Color Switching. Angew. Chem. Int. Ed. 2017, 56, 7792–7796. doi: 10.1002/anie.201702563
  • Khan, A.-u.; Gilani, A.H. Selective Bronchodilatory Effect of Rooibos Tea (Aspalathus linearis) and Its Flavonoid, Chrysoeriol. Eur. J. Nutr. 2006, 45, 463–469. doi: 10.1007/s00394-006-0620-0
  • Diallo, A.; Mothudi, B.M.; Manikandan, E.; Maaza, M. Luminescent Eu2O3 Nanocrystals by Aspalathus linearis’ Extract: Structural and Optical Properties. J. Nanophotonics 2016, 10, 026010. doi: 10.1117/1.JNP.10.026010
  • Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M. Green Synthesis of ZnO Nanoparticles by Aspalathus linearis: Structural & Optical Properties. J. Alloys. Compd. 2015, 646, 425–430. doi: 10.1016/j.jallcom.2015.05.242
  • Diallo, A.; Beye, A.C.; Doyle, T.B.; Park, E.; Maaza, M. Green Synthesis of Co3O4 Nanoparticles via Aspalathus linearis: Physical Properties. Green Chem. Lett. Rev. 2015, 8, 30–36. doi: 10.1080/17518253.2015.1082646
  • Diallo, A.; Doyle, T.B.; Mothudi, B.M.; Manikandan, E.; Rajendran, V.; Maaza, M. Magnetic Behavior of Biosynthesized Co3O4 Nanoparticles. J. Magn. Magn. Mater. 2017, 424, 251–255. doi: 10.1016/j.jmmm.2016.10.063
  • Portemer, F.; Delahaye-Vidal, A.; Figlarz, M. Characterization of Active Material Deposited at the Nickel Hydroxide Electrode by Electrochemical Impregnation. J. Electrochem. Soc. 1992, 139, 671. doi: 10.1149/1.2069283
  • de Soler-Illia, G.J.A.A.; Jobbágy, M.; Regazzoni, A.E.; Blesa, M.A. Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism. Chem. Mater. 1999, 11, 3140–3146. doi: 10.1021/cm9902220
  • Li, Y.; Xie, X.; Liu, J.; Cai, M.; Rogers, J.; Shen, W. Synthesis of α-Ni(OH)2 with Hydrotalcite-Like Structure: Precursor for the Formation of NiO and Ni Nanomaterials with Fibrous Shapes. Chem. Eng. J. 2008, 136, 398–408. doi: 10.1016/j.cej.2007.06.001
  • Xu, L.P.; Ding, Y.S.; Chen, C.H.; Zhao, L.L.; Rimkus, C.; Joesten, R.; Suib, S.L. 3D Flowerlike α-nickel Hydroxide with Enhanced Electrochemical Activity Synthesized by Microwave-assisted Hydrothermal Method. Chem. Mater. 2007, 20, 308–316. doi: 10.1021/cm702207w
  • Tong, G.-X.; Liu, F.-T.; Wu, W.-H.; Shen, J.-P.; Hu, X.; Liang, Y. Polymorphous α- and β-Ni(OH)2 Complex Architectures: Morphological and Phasal Evolution Mechanisms and Enhanced Catalytic Activity as non-Enzymatic Glucose Sensors. Cryst. Eng. Comm. 2012, 14, 5963–5973. doi: 10.1039/c2ce25622c
  • Rajamathi, M.; Vishnu Kamath, P. On the Relationship Between α-Nickel Hydroxide and the Basic Salts of Nickel. J. Power Sources 1998, 70, 118–121. doi: 10.1016/S0378-7753(97)02656-6
  • Genin, P.; Delahyde-Vidal, A.; Portemer, F.; Tekaia-Ehlsissen, K.; Figlarz, M. Preparation and Characterization of Alpha-type Nickel Hydroxides Obtained by Chemical Precipitation: Study of the Anionic Species. Eur. J. Solid State Inorg. Chem. 1991, 28, 505.
  • Le Bihan, S.; Figlarz, M. Croissance de L'hydroxyde de Nickel Ni(OH)2 à Partir D'un Hydroxyde de Nickel Turbostratique. J. Cryst. Growth. 1972, 13–14, 458–461. doi: 10.1016/0022-0248(72)90280-1
  • Coudun, C.; Grillon, F.; Hochepied, J.-F. Surfactant Effects on pH-Controlled Synthesis of Nickel Hydroxides. Colloids Surf., A. 2006, 280, 23–31. doi: 10.1016/j.colsurfa.2006.01.018
  • Oliva, P.; leonardi, J.; Laurent, J.F.; Delmas, C.; Braconnier, J.J.; Figlarz, M.; Fievet, F.; de Guibert, A. Review of the Structure and the Electrochemistry of Nickel Hydroxides and Oxy-Hydroxides. J. Power Sources 1982, 8, 229–255. doi: 10.1016/0378-7753(82)80057-8
  • Sheena, P.A.; Priyanka, K.P.; Sabu, N.A.; Sabu, B.; Varghese, T. Effect of Calcination Temperature on the Structural and Optical Properties of Nickel Oxide Nanoparticles, Nanosystems. Phys. Chem. Math. 2014, 5, 441–449.
  • Luo, Y.; Li, G.; Duan, G.; Zhang, L. One-step Synthesis of Spherical α-Ni(OH) 2 Nanoarchitectures. Nanotechnology 2006, 17, 4278–4283. doi: 10.1088/0957-4484/17/16/046
  • Han, D.; Xu, P.; Jing, X.; Wang, J.; Yang, P.; Shen, Q.; Liu, J.; Song, D.; Gao, Z.; Zhang, M. Trisodium Citrate Assisted Synthesis of Hierarchical NiO Nanospheres with Improved Supercapacitor Performance. J. Power Sources 2013, 235, 45–53. doi: 10.1016/j.jpowsour.2013.01.180
  • Lang, F.; Sun, D.; Liu, J.; Wang, H.; Yan, H. Improved Size-Tunable Synthesis of Monodisperse NiO Nanoparticles. Mater. Lett. 2016, 181, 328–330. doi: 10.1016/j.matlet.2016.06.056
  • Kaviyarasu, K.; Manikandan, E.; Kennedy, J.; Jayachandran, M.; Ladchumananandasiivam, R.; Umbelino De Gomes, U.; Maaza, M. Synthesis and Characterization Studies of NiO Nanorods for Enhancing Solar Cell Efficiency Using Photon Upconversion Materials. Ceram. Int. 2016, 42, 8385–8394. doi: 10.1016/j.ceramint.2016.02.054
  • Liu, S.; Zeng, W.; Chen, T. Synthesis of Hierarchical Flower-Like NiO and the Influence of Surfactant. Physica E. 2017, 85, 13–18. doi: 10.1016/j.physe.2016.08.016
  • Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, 2001.
  • Wang, J.; Wang, Z.; Huang, B.; Ma, Y.; Liu, Y.; Qin, X.; Zhang, X.; Dai, Y. Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Appl. Mater. Interfaces 2012, 4, 4024–4030. doi: 10.1021/am300835p
  • Lee, J.H.; Ko, K.H.; Park, B.O. Electrical and Optical Properties of ZnO Transparent Conducting Films by the sol–gel Method. J. Cryst. Growth 2003, 247, 119–125. doi: 10.1016/S0022-0248(02)01907-3
  • Varkey, A.J.; Fort, A.F. Solution Growth Technique for Deposition of Nickel Oxide Thin Films. Thin Solid Films. 1993, 235, 47–50. doi: 10.1016/0040-6090(93)90241-G
  • Song, X.; Gao, L. Facile Synthesis of Polycrystalline NiO Nanorods Assisted by Microwave Heating. J. Am. Ceram. Soc. 2008, 91, 3465–3468. doi: 10.1111/j.1551-2916.2008.02667.x
  • Kim, T.Y.; Kim, J.Y.; Senthil Kumar, M.; Suh, E.K.; Nahm, K.S. Influence of Ambient Gases on the Morphology and Photoluminescence of ZnO Nanostructures Synthesized with Nickel Oxide Catalyst. J. Cryst. Growth 2004, 270, 491–497. doi: 10.1016/j.jcrysgro.2004.07.009
  • Madhu, G.; Biju, V. Effect of Ni2+ and O2− Vacancies on the Electrical and Optical Properties of Nanostructured Nickel Oxide Synthesized Through a Facile Chemical Route. Physica E. 2014, 60, 200–205. doi: 10.1016/j.physe.2014.02.011
  • Cao, H.; Qiu, X.; Liang, Y.; Zhang, L.; Zhao, M.; Zhu, Q. Sol-Gel Template Synthesis and Photoluminescence of n- and p-Type Semiconductor Oxide Nanowires. Chem. Phys. Chem. 2006, 7, 497–501. doi: 10.1002/cphc.200500452
  • Subramanian, B.; Mohamed Ibrahim, M.; Senthilkumar, V.; Murali, K.R.; Vidhya, V.S.; Sanjeeviraja, C.; Jayachandran, M. Optoelectronic and Electrochemical Properties of Nickel Oxide (NiO) Films Deposited by DC Reactive Magnetron Sputtering. Physica B. 2008, 403, 4104–4110. doi: 10.1016/j.physb.2008.08.014
  • Chakrabarty, S.; Chatterjee, K. . J. Phys. Sci. 2009, 13, 245–250.
  • Li, L.; Xu, K.; Wang, Y.; Hu, Z.; Zhao, H. Enhanced Persistent Luminescence and Photocatalytic Properties of Ga2O3:Cr3+ by In3+ Doping. Opt. Mater. Express. 2016, 6, 1022–1030.
  • Lee, S.-K.; Mills, A. Novel Photochemistry of Leuco-Methylene Blue. Chem. Commun. 2003, 2366–2367. doi: 10.1039/b307228b