14,762
Views
104
CrossRef citations to date
0
Altmetric
RESEARCH REVIEW

The current trends in the green syntheses of titanium oxide nanoparticles and their applications

ORCID Icon, , ORCID Icon, ORCID Icon, , & show all
Pages 492-502 | Received 27 Oct 2017, Accepted 16 Oct 2018, Published online: 01 Nov 2018

References

  • Hussain, I.; Singh, N.; Singh, A.; Singh, H.; Singh, S. Green Synthesis of Nanoparticles and its Potential Application. Biotechnol. Lett. 2016, 38 (4), 545–560. doi: 10.1007/s10529-015-2026-7
  • Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract. Biotechnol. Prog. 2006, 22 (2), 577–583. doi: 10.1021/bp0501423
  • Muhd Julkapli, N.; Bagheri, S.; Bee Abd Hamid, S. Recent Advances in Heterogeneous Photocatalytic Decolorization of Synthetic Dyes. Sci. World J. 2014, 2014, 1–25. doi:10.1155/2014/692307.
  • Centi, G.; Ciambelli, P.; Perathoner, S.; Russo, P. Environmental Catalysis: Trends and Outlook. Catal. Today 2002, 75 (1), 3–15. doi: 10.1016/S0920-5861(02)00037-8
  • Pirkanniemi, K.; Sillanpää, M. Heterogeneous Water Phase Catalysis as an Environmental Application: A Review. Chemosphere 2002, 48 (10), 1047–1060. doi: 10.1016/S0045-6535(02)00168-6
  • Valencia, S.; Vargas, X.; Rios, L.; Restrepo, G.; Marín, J.M. Sol–gel and Low-temperature Solvothermal Synthesis of Photoactive Nano-titanium Dioxide. J. Photochem. Photobiol., A 2013, 251, 175–181. doi: 10.1016/j.jphotochem.2012.10.025
  • Chen, Y.-F.; Tsai, H.-Y.; Wu, T.-S. Anti-inflammatory and Analgesic Activities from Roots of Angelica Pubescens. Planta Med. 1995, 61 (1), 2–8. doi: 10.1055/s-2006-957987
  • Jayaseelan, C.; Rahuman, A.A.; Roopan, S.M.; Kirthi, A.V.; Venkatesan, J.; Kim, S.-K.; Iyappan, M.; Siva, C. Biological Approach to Synthesize TiO2 Nanoparticles Using Aeromonas Hydrophila and Its Antibacterial Activity. Spectrochim. Acta, Part A 2013, 107, 82–89. doi: 10.1016/j.saa.2012.12.083
  • Edmundson, M.C.; Capeness, M.; Horsfall, L. Exploring the Potential of Metallic Nanoparticles Within Synthetic Biology. New Biotechnology 2014, 31 (6), 572–578. doi: 10.1016/j.nbt.2014.03.004
  • Suresh, K.; Prabagaran, S.; Sengupta, S.; Shivaji, S. Bacillus Indicus sp. nov., an Arsenic-resistant Bacterium Isolated from an Aquifer in West Bengal, India. Int. J. Syst. Evol. Microbiol. 2004, 54 (4), 1369–1375. doi: 10.1099/ijs.0.03047-0
  • Bhainsa, K.C.; D'souza, S. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus Fumigatus. Colloids Surf. B 2006, 47 (2), 160–164. doi: 10.1016/j.colsurfb.2005.11.026
  • Song, J.Y.; Kim, B.S. Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioproc. Biosyst. Eng. 2009, 32 (1), 79. doi: 10.1007/s00449-008-0224-6
  • Dobrucka, R. Synthesis of Titanium Dioxide Nanoparticles Using Echinacea Purpurea Herba (Spring 2017). Iran. J. Pharm. Res. 2017, 16, 756–762.
  • Órdenes-Aenishanslins, N.A.; Saona, L.A.; Durán-Toro, V.M.; Monrás, J.P.; Bravo, D.M.; Pérez-Donoso, J.M. Use of Titanium Dioxide Nanoparticles Biosynthesized by Bacillus Mycoides in Quantum dot Sensitized Solar Cells. Microb. Cell Fact. 2014, 13 (1), 90.
  • Pantidos, N.; Horsfall, L.E. Biological Synthesis of Metallic Nanoparticles by Bacteria, Fungi and Plants. J. Nanomed. Nanotechnol. 2014, 5 (5), 1. doi: 10.4172/2157-7439.1000233
  • Nadeem, M.; Abbasi, B.H.; Younas, M.; Ahmad, W.; Khan, T. A Review of the Green Syntheses and Anti-microbial Applications of Gold Nanoparticles. Green Chem. Lett. Rev. 2017, 10 (4), 216–227. doi: 10.1080/17518253.2017.1349192
  • Asha, A.; Sivaranjani, T.; Thirunavukkarasu, P.; Asha, S. Green Synthesis of Silver Nanoparticle from Different Plants – A Review. Int. J. Pure App. Biosci. 2016, 4 (2), 118–124. doi: 10.18782/2320-7051.2221
  • Marimuthu, S.; Rahuman, A.A.; Jayaseelan, C.; Kirthi, A.V.; Santhoshkumar, T.; Velayutham, K.; Bagavan, A.; Kamaraj, C.; Elango, G.; Iyappan, M. Acaricidal Activity of Synthesized Titanium Dioxide Nanoparticles Using Calotropis Gigantea Against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pacific J. Trop. Med. 2013, 6 (9), 682–688. doi: 10.1016/S1995-7645(13)60118-2
  • Jalill, R.D.A.; Nuaman, R.S.; Abd, A.N. Biological Synthesis of Titanium Dioxide Nanoparticles by Curcuma Longa Plant Extract and Study its Biological Properties. World Sci. News 2016, 49 (2), 204–222.
  • Singh, P. Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property. World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2016, 10 (2), 275–278.
  • Bao, S.-J.; Lei, C.; Xu, M.-W.; Cai, C.-J.; Jia, D.-Z. Environment-friendly Biomimetic Synthesis of TiO2 Nanomaterials for Photocatalytic Application. Nanotechnology 2012, 23 (20), 205601. doi: 10.1088/0957-4484/23/20/205601
  • Mittal, A.K.; Bhaumik, J.; Kumar, S.; Banerjee, U.C. Biosynthesis of Silver Nanoparticles: Elucidation of Prospective Mechanism and Therapeutic Potential. J. Colloid Interface Sci. 2014, 415, 39–47. doi: 10.1016/j.jcis.2013.10.018
  • Rajakumar, G.; Rahuman, A.A.; Priyamvada, B.; Khanna, V.G.; Kumar, D.K.; Sujin, P. Eclipta Prostrata Leaf Aqueous Extract Mediated Synthesis of Titanium Dioxide Nanoparticles. Mater. Lett. 2012, 68, 115–117. doi: 10.1016/j.matlet.2011.10.038
  • Rajakumar, G.; Rahuman, A.A.; Jayaseelan, C.; Santhoshkumar, T.; Marimuthu, S.; Kamaraj, C.; Bagavan, A.; Zahir, A.A.; Kirthi, A.V.; Elango, G. Solanum Trilobatum Extract-mediated Synthesis of Titanium Dioxide Nanoparticles to Control Pediculus Humanus Capitis, Hyalomma Anatolicum Anatolicum and Anopheles Subpictus. Parasitol. Res. 2014, 113 (2), 469–479. doi: 10.1007/s00436-013-3676-9
  • Madadi, Z.; Lotfabad, T.B. Aqueous Extract of Acanthophyllum Laxiusculum Roots as a Renewable Resource for Green Synthesis of Nano-sized Titanium Dioxide Using Sol-Gel Method. Adv. Ceram. Prog. 2016, 2 (1), 26.
  • Ganesan, S.; Babu, I.G.; Mahendran, D.; Arulselvi, P.I.; Elangovan, N.; Geetha, N.; Venkatachalam, P. Green Engineering of Titanium Dioxide Nanoparticles Using Ageratina Altissima (L.) King & HE Robines. Medicinal Plant Aqueous Leaf Extracts for Enhanced Photocatalytic Activity. Ann. Phytomedicine – Int. J. 2016, 5, 69–75. doi: 10.21276/ap.2016.5.2.8
  • Rao, K.G.; Ashok, C.; Rao, K.V.; Chakra, C.S.; Tambur, P. Green Synthesis of TiO2 Nanoparticles Using Aloe Vera Extract. Int. J. Adv. Res. Phys. Sci. 2015, 2 (1A), 28–34.
  • Khadar, A.; Behara, D.K.; Kumar, M.K. Synthesis and Characterization of Controlled Size TiO2 Nanoparticles Via Green Route Using Aloe Vera Extract. Int. J. Sci. Res. 2016, 5 (11), 1913–1916.
  • Roopan, S.M.; Bharathi, A.; Prabhakarn, A.; Rahuman, A.A.; Velayutham, K.; Rajakumar, G.; Padmaja, R.; Lekshmi, M.; Madhumitha, G. Efficient Phyto-Synthesis and Structural Characterization of Rutile TiO2 Nanoparticles Using Annona Squamosa Peel Extract. Spectrochim. Acta, Part A 2012, 98, 86–90. doi: 10.1016/j.saa.2012.08.055
  • Saravanan, P.; Ganapathy, M.; Charles, A.; Tamilselvan, S.; Jeyasekaran, R.; Vimalan, M. Electrical Properties of Green Synthesized TiO2 Nanoparticles. 2016.
  • Sankar, R.; Rizwana, K.; Shivashangari, K.S.; Ravikumar, V. Ultra-rapid Photocatalytic Activity of Azadirachtaindica Engineered Colloidal Titanium Dioxide Nanoparticles. Appl. Nanosci. 2015, 5 (6), 731–736. doi: 10.1007/s13204-014-0369-3
  • Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Santhoshkumar, T.; Marimuthu, S.; Jayaseelan, C.; Bagavan, A.; Kirthi, A.V.; Kamaraj, C.; Zahir, A.A. Evaluation of Catharanthus Roseus Leaf Extract-mediated Biosynthesis of Titanium Dioxide Nanoparticles Against Hippobosca Maculata and Bovicola Ovis. Parasitol. Res. 2012, 111 (6), 2329–2337. doi: 10.1007/s00436-011-2676-x
  • Valli, G.; Geetha, S. A Green Method for the Synthesis of Titanium Dioxide Nanoparticles Using Cassia Auriculata Leaves Extract. J. Biomed. Pharm. Sci 2015, 2, 490–497.
  • Kashale, A.A.; Gattu, K.P.; Ghule, K.; Ingole, V.H.; Dhanayat, S.; Sharma, R.; Chang, J.-Y.; Ghule, A.V. Biomediated Green Synthesis of TiO2 Nanoparticles for Lithium ion Battery Application. Composites Part B Eng. 2016, 99, 297–304. doi: 10.1016/j.compositesb.2016.06.015
  • Naik, G.K.; Mishra, P.M.; Parida, K. Green Synthesis of Au/TiO2 for Effective dye Degradation in Aqueous System. Chem. Eng. J. 2013, 229, 492–497. doi: 10.1016/j.cej.2013.06.053
  • Rao, K.G.; Ashok, C.; Rao, K.V.; Chakra, C.S.; Rajendar, V. Synthesis of TiO2 Nanoparticles from Orange Fruit Waste. Synthesis 2015, 2 (1), 1.
  • Sahu, N.; Soni, D.; Chandrashekhar, B.; Sarangi, B.K.; Satpute, D.; Pandey, R.A. Synthesis and Characterization of Silver Nanoparticles Using Cynodon Dactylon Leaves and Assessment of Their Antibacterial Activity. Bioproc. Biosyst. Eng. 2013, 36 (7), 999–1004. doi: 10.1007/s00449-012-0841-y
  • Zahir, A.A.; Chauhan, I.S.; Bagavan, A.; Kamaraj, C.; Elango, G.; Shankar, J.; Arjaria, N.; Roopan, S.M.; Rahuman, A.A.; Singh, N. Green Synthesis of Silver and Titanium Dioxide Nanoparticles Using Euphorbia Prostrata Extract Shows Shift From Apoptosis to G0/G1 Arrest Followed by Necrotic Cell Death in Leishmania Donovani. Antimicrobial Agents Chemother. 2015, 59 (8), 4782–4799. doi: 10.1128/AAC.00098-15
  • Kumar, P.S.M.; Francis, A.P.; Devasena, T. Biosynthesized and Chemically Synthesized Titania Nanoparticles: Comparative Analysis of Antibacterial Activity. J. Environ. Nanotechnol 2014, 3 (3), 73–81. doi: 10.13074/jent.2014.09.143098
  • Hudlikar, M.; Joglekar, S.; Dhaygude, M.; Kodam, K. Green Synthesis of TiO 2 Nanoparticles by Using Aqueous Extract of Jatropha Curcas L. Latex. Mater. Lett. 2012, 75, 196–199. doi: 10.1016/j.matlet.2012.02.018
  • Sundrarajan, M.; Bama, K.; Bhavani, M.; Jegatheeswaran, S.; Ambika, S.; Sangili, A.; Nithya, P.; Sumathi, R. Obtaining Titanium Dioxide Nanoparticles with Spherical Shape and Antimicrobial Properties Using M. Citrifolia Leaves Extract by Hydrothermal Method. J. Photochem. Photobiol., B 2017, 171, 117–124. doi: 10.1016/j.jphotobiol.2017.05.003
  • Sivaranjani, V.; Philominathan, P. Synthesize of Titanium Dioxide Nanoparticles Using Moringa Oleifera Leaves and Evaluation of Wound Healing Activity. Wound Med. 2016, 12, 1–5. doi: 10.1016/j.wndm.2015.11.002
  • Sundrarajan, M.; Gowri, S. Green Synthesis of Titanium Dioxide Nanoparticles by Nyctanthes Arbor-Tristis Leaves Extract. Chalcogenide Lett. 2011, 8 (8), 447–451.
  • Jayasinghe, C.; Gotoh, N.; Aoki, T.; Wada, S. Phenolics Composition and Antioxidant Activity of Sweet Basil (Ocimum Basilicum L). J. Agric. Food Chem. 2003, 51 (15), 4442–4449. doi: 10.1021/jf034269o
  • Hunagund, S.M.; Desai, V.R.; Kadadevarmath, J.S.; Barretto, D.A.; Vootla, S.; Sidarai, A.H. Biogenic and Chemogenic Synthesis of TiO 2 NPs via Hydrothermal Route and Their Antibacterial Activities. RSC Adv. 2016, 6 (99), 97438–97444. doi: 10.1039/C6RA22163G
  • Santhoshkumar, T.; Rahuman, A.A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A.V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S.-K. Green Synthesis of Titanium Dioxide Nanoparticles Using Psidium Guajava Extract and Its Antibacterial and Antioxidant Properties. Asian Pacific Journal of Tropical Medicine 2014, 7 (12), 968–976. doi: 10.1016/S1995-7645(14)60171-1
  • Chatterjee, A.; Nishanthini, D.; Sandhiya, N.; Abraham, J. , Biosynthesis of Titanium Dioxide Nanoparticles Using Vigna Radiata. Asian J Pharm Clin Res. 2016, 9 (4), 1–4.
  • Subhapriya, S.; Gomathipriya, P. Green Synthesis of Titanium Dioxide (TiO2) Nanoparticles by Trigonella Foenum-Graecum Extract and its Antimicrobial Properties. Microbial Pathogenesis 2018, 116, 215–220. doi: 10.1016/j.micpath.2018.01.027
  • Jha, A.K.; Prasad, K.; Kulkarni, A. Synthesis of TiO2 Nanoparticles Using Microorganisms. Colloids Surf., B 2009, 71 (2), 226–229. doi: 10.1016/j.colsurfb.2009.02.007
  • Khan, R.; Fulekar, M. Biosynthesis of Titanium Dioxide Nanoparticles Using Bacillus Amyloliquefaciens Culture and Enhancement of its Photocatalytic Activity for the Degradation of a Sulfonated Textile dye Reactive Red 31. J Colloid Interface Sci. 2016, 475, 184–191. doi: 10.1016/j.jcis.2016.05.001
  • Kirthi, A.V.; Rahuman, A.A.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Jayaseelan, C.; Elango, G.; Zahir, A.A.; Kamaraj, C.; Bagavan, A. Biosynthesis of Titanium Dioxide Nanoparticles Using Bacterium Bacillus Subtilis. Mater. Lett. 2011, 65 (17), 2745–2747. doi: 10.1016/j.matlet.2011.05.077
  • Dhandapani, P.; Maruthamuthu, S.; Rajagopal, G. Bio-mediated Synthesis of TiO2 Nanoparticles and its Photocatalytic Effect on Aquatic Biofilm. J. Photochem. Photobiol., B 2012, 110, 43–49. doi: 10.1016/j.jphotobiol.2012.03.003
  • Prasad, K.; Jha, A.K.; Kulkarni, A. Lactobacillus Assisted Synthesis of Titanium Nanoparticles. Nanoscale Res. Lett. 2007, 2 (5), 248. doi: 10.1007/s11671-007-9060-x
  • Malarkodi, C.; Chitra, K.; Rajeshkumar, S.; Gnanajobitha, G.; Paulkumar, K.; Vanaja, M.; Annadurai, G. Novel Eco-friendly Synthesis of Titanium Oxide Nanoparticles by Using Planomicrobium sp. and Its Antimicrobial Evaluation. Der Pharmacia Sinica 2013, 4 (3), 59–66.
  • Durairaj, B.; Xavier, T.; Muthu, S. Research Article Fungal Generated Titanium Dioxide Nanoparticles: A Potent Mosquito (Aedes aegypti) Larvicidal Agent.
  • Babitha, S.; Korrapati, P.S. Biosynthesis of Titanium Dioxide Nanoparticles Using a Probiotic from Coal Fly Ash Effluent. Mater. Res. Bull. 2013, 48 (11), 4738–4742. doi: 10.1016/j.materresbull.2013.08.016
  • Rajakumar, G.; Rahuman, A.A.; Roopan, S.M.; Khanna, V.G.; Elango, G.; Kamaraj, C.; Zahir, A.A.; Velayutham, K. Fungus-mediated Biosynthesis and Characterization of TiO2 Nanoparticles and Their Activity Against Pathogenic Bacteria. Spectrochim. Acta, Part A 2012, 91, 23–29. doi: 10.1016/j.saa.2012.01.011
  • Bansal, V.; Rautaray, D.; Bharde, A.; Ahire, K.; Sanyal, A.; Ahmad, A.; Sastry, M. Fungus-mediated Biosynthesis of Silica and Titania Particles. J. Mater. Chem. 2005, 15 (26), 2583–2589. doi: 10.1039/b503008k
  • Bansal, V.; Poddar, P.; Ahmad, A.; Sastry, M. Room-temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc. 2006, 128 (36), 11958–11963. doi: 10.1021/ja063011m
  • Raliya, R.; Tarafdar, J. Biosynthesis and Characterization of Zinc, Magnesium and Titanium Nanoparticles: an eco-Friendly Approach. Int. Nano Lett. 2014, 4 (1), 93. doi: 10.1007/s40089-014-0093-8
  • Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Parishcha, R.; Ajaykumar, P.; Alam, M.; Kumar, R. Fungus-mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett. 2001, 1 (10), 515–519. doi: 10.1021/nl0155274
  • Balasooriya, E.R.; Jayasinghe, C.D.; Jayawardena, U.A.; Ruwanthika, R.W.D.; Mendis de Silva, R.; Udagama, P.V. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology. J. Nanomater. 2017, 2017. doi:10.1155/2017/5919836.
  • Farag, A.A.; El-shafei, A.; Ibrahim, H.M.; Asker, M.S. Influence of Bacterial Cellulose for Synthesis and Application of Titanium Dioxide Nanoparticles Compared with Sol-Gel Method. Int. J. Life Sci. Res. 2016, 4 (1), 69–75.
  • Sewell, S.L.; Wright, D.W. Biomimetic Synthesis of Titanium Dioxide Utilizing the R5 Peptide Derived From Cylindrotheca F Usiformis. Chem. Mater. 2006, 18 (13), 3108–3113. doi: 10.1021/cm060342p
  • Padalkar, S.; Schroeder, K.; Won, Y.; Jang, H.; Stanciu, L. Biotemplated Silica and Titania Nanowires: Synthesis, Characterization and Potential Applications. J. Nanosci. Nanotechnol. 2012, 12 (1), 227–235. doi: 10.1166/jnn.2012.5128
  • Ramimoghadam, D.; Bagheri, S.; Abd Hamid, S.B. Biotemplated Synthesis of Anatase Titanium Dioxide Nanoparticles via Lignocellulosic Waste Material. BioMed. Res. Int. 2014, 2014. doi:10.1155/2014/205636.
  • Chen, G.; Li, M.; Li, F.; Sun, S.; Xia, D. Protein-mediated Synthesis of Nanostructured Titania with Different Polymorphs at Room Temperature. Adv. Mater. 2010, 22 (11), 1258–1262. doi: 10.1002/adma.200902901
  • Chen, J.; Saggar, J.K.; Corey, P.; Thompson, L.U. Flaxseed and Pure Secoisolariciresinol Diglucoside, but not Flaxseed Hull, Reduce Human Breast Tumor Growth (MCF-7) in Athymic Mice. J. Nutrition 2009, 139 (11), 2061–2066. doi: 10.3945/jn.109.112508
  • Yang, D.; Qi, L.; Ma, J. Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes. Adv. Mater. 2002, 14 (21), 1543–1546. doi: 10.1002/1521-4095(20021104)14:21<1543::AID-ADMA1543>3.0.CO;2-B
  • Bagheri, S.; Chekin, F.; Hamid, S.B.A. Cobalt Doped Titanium Dioxide Nanoparticles: Synthesis, Characterization and Electrocatalytic Study. J. Chin. Chem. Soc. 2014, 61 (6), 702–706. doi: 10.1002/jccs.201300486
  • Muniandy, S.S.; Kaus, N.H.M.; Jiang, Z.-T.; Altarawneh, M.; Lee, H.L. Green Synthesis of Mesoporous Anatase TiO2 Nanoparticles and Their Photocatalytic Activities. RSC Adv. 2017, 7 (76), 48083–48094. doi: 10.1039/C7RA08187A
  • Shi, J.; Yang, D.; Jiang, Z.; Jiang, Y.; Liang, Y.; Zhu, Y.; Wang, X.; Wang, H. Simultaneous Size Control and Surface Functionalization of Titania Nanoparticles Through Bioadhesion-assisted Bio-inspired Mineralization. J. Nanopart. Res. 2012, 14 (9), 1120. doi: 10.1007/s11051-012-1120-1
  • Cole, K.E.; Ortiz, A.N.; Schoonen, M.A.; Valentine, A.M. Peptide-and Long-chain Polyamine-Induced Synthesis of Micro-and Nanostructured Titanium Phosphate and Protein Encapsulation. Chem. Mater. 2006, 18 (19), 4592–4599. doi: 10.1021/cm060807b
  • Yan, Y.; Hao, B.; Wang, X.; Chen, G. Bio-inspired Synthesis of Titania with Polyamine Induced Morphology and Phase Transformation at Room-temperature: Insight into the Role of the Protonated Amino Group. Dalton Trans. 2013, 42 (34), 12179–12184. doi: 10.1039/c3dt50359c
  • KyuáKim, J.; HyeokáPark, J. Lysozyme-mediated Biomineralization of Titanium–Tungsten Oxide Hybrid Nanoparticles with High Photocatalytic Activity. Chem. Commun. 2014, 50 (82), 12392–12395. doi: 10.1039/C4CC04820B
  • Zhang, G.; Zhang, T.; Li, B.; Zhang, X.; Chen, X. Biomimetic Synthesis of Interlaced Mesh Structures TiO2 Nanofibers with Enhanced Photocatalytic Activity. J. Alloys Compd. 2016, 668, 113–120. doi: 10.1016/j.jallcom.2016.01.197
  • Jiang, Y.; Yang, D.; Zhang, L.; Sun, Q.; Sun, X.; Li, J.; Jiang, Z. Preparation of Protamine–Titania Microcapsules Through Synergy Between Layer-by-layer Assembly and Biomimetic Mineralization. Adv. Funct. Mater. 2009, 19 (1), 150–156. doi: 10.1002/adfm.200800974
  • Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.; Hamilton, J.W.; Byrne, J.A.; O'shea, K. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal., B 2012, 125, 331–349. doi: 10.1016/j.apcatb.2012.05.036
  • Visai, L.; De Nardo, L.; Punta, C.; Melone, L.; Cigada, A.; Imbriani, M.; Arciola, C.R. Titanium Oxide Antibacterial Surfaces in Biomedical Devices. Int. J. Artif. Organs 2011, 34 (9), 929–946. doi: 10.5301/ijao.5000050
  • Kubacka, A.; Diez, M.S.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Dos Santos, V.A.M.; Fernández-García, M. Understanding the Antimicrobial Mechanism of TiO2-based Nanocomposite Films in a Pathogenic Bacterium. Sci. Rep. 2014, 4, 4134. doi: 10.1038/srep04134
  • Benelli, G.; Caselli, A.; Canale, A. Nanoparticles for Mosquito Control: Challenges and Constraints. J. King Saud Univ. Sci. 2016, 29, 424–435. doi: 10.1016/j.jksus.2016.08.006
  • Valentín, L.; Nousiainen, A.; Mikkonen, A. Introduction to Organic Contaminants in Soil: Concepts and Risks. In Emerging Organic Contaminants in Sludges, Springer: Berlin, Heidelberg, 2013; pp 1–29.
  • Rodrigues, T.S.; Fajardo, H.V.; Dias, A.; Mezalira, D.Z.; Probst, L.F.; Stumpf, H.O.; Barros, W.P.; de Souza, G.P. Synthesis, Characterization and Catalytic Potential of MgNiO2 Nanoparticles Obtained From a Novel [MgNi (Opba)]n· 9nH2O Chain. Ceram. Int. 2016, 42 (12), 13635–13641. doi: 10.1016/j.ceramint.2016.05.158
  • Hotze, E.M.; Phenrat, T.; Lowry, G.V. Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. J. Environ. Qual. 2010, 39 (6), 1909–1924. doi: 10.2134/jeq2009.0462
  • Park, H.-O.; Yu, M.; Kang, S.K.; Yang, S.I.; Kim, Y.-J. Comparison of Cellular Effects of Titanium Dioxide Nanoparticles with Different Photocatalytic Potential in Human Keratinocyte, HaCaT Cells. Mole. Cell. Toxicol. 2011, 7 (1), 67–75. doi: 10.1007/s13273-011-0010-4
  • Shah, S.N.A.; Shah, Z.; Hussain, M.; Khan, M. Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg. Chem. Appl. 2017, 2017, 1. doi:10.1155/2017/4101735.
  • Salomatina, E.; Loginova, A.; Ignatov, S.; Knyazev, A.; Spirina, I.; Smirnova, L. Structure and Catalytic Activity of Poly (Titanium Oxide) Doped by Gold Nanoparticles in Organic Polymeric Matrix. J. Inorg. Organomet. Polym. Mater. 2016, 26 (6), 1280–1291. doi: 10.1007/s10904-016-0409-4