1,291
Views
9
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Sequential injection-chemiluminescence evaluation of stigmasterol glucoside and luteolin via green synthesis of silver nanoparticles using biomass of plectranthus asirensis

, , , &
Pages 523-533 | Received 09 Oct 2018, Accepted 29 Oct 2018, Published online: 09 Nov 2018

References

  • Codd, L.E. Lamiaceae. In Flora of Southern Africa, 28. Pretoria; Leistner, O.A., Ed.; Botanical Research Institute, Department of Agriculture and Water Supply: Pretoria, South Africa, 1985; pp 137–172.
  • Abdel-Mogib, M.; Albar, H.A.; Batterjee, S.M. Chemistry of the Genus Plectranthus. Molecules. 2002, 7, 271–301. doi:10.3390/70200271.
  • Waldia, S.; Joshi, B.P.; Pathak, U.; Joshi, M.C. The Genus Plectranthus in India and its Chemistry. Chem. Biodivers. 2011, 8, 244–252. doi:10.1002/cbdv.201000048.
  • Rice, L.J.; Brits, G.J.; Potgieter, C.J.; Staden, J.V. Plectranthus: a Plant for the Future. South Afr J. Bot. 2011, 77, 947–959. doi: 10.1016/j.sajb.2011.07.001
  • Lukhoba, C.W.; Simmonds, M.S.J.; Paton, A.J. Plectranthus: a Review of Ethnobotanical Uses. J. Ethnopharmacol. 2006, 103, 1–24. doi: 10.1016/j.jep.2005.09.011
  • Stavri, M.; Paton, A.J.; Skelton, B.W.; Gibbons, S. Antibacterial Diterpenes From Plectranthus Ernstii. J. Nat. Prod. 2009, 72, 1191–1194. doi: 10.1021/np800581s
  • Simoes, M.F.; Rijo, P.; Duarte, A.; Barbosa, D.; Matias, D.; Delgado, J.; Cirilo, N.; Rodriguez, B. Two new Diterpenoids From Plectranthus Species. Phytochem. Lett. 2010, 3, 221–225. doi: 10.1016/j.phytol.2010.08.002
  • Van Zyl, R.L.; Khan, F.; Edwards, T.J.; Drewes, S.E. Antiplasmodial Activities of Some Abietane Diterpenes From the Leaves of Five Plectranthus Species. S. Afr. J. Sci. 2008, 104, 62–64.
  • Grayer, R.J.; Eckert, M.R.; Lever, A.; Veitch, N.C.; Kite, G.C.; Paton, A.J. Distribution of Exudate Flavonoids in the Genus Plectranthus. Biochem. Sys. Ecol. 2010, 38, 335–341. doi: 10.1016/j.bse.2010.01.014
  • Kapewangolo, P.; Hussein, A.A.; Meyer, D. Inhibition of HIV-1 Enzymes, Antioxidant and Anti-Inflammatory Activities of Plectranthus Barbatus. J. Ethnopharmacology. 2013, 26, 184–190. doi: 10.1016/j.jep.2013.06.019
  • Gaspar-Marques, C.; Rijo, P.; Simoes, M.F.; Duarte, M.A.; Rodriguez, B. Abietanes From Plectranthus Grandidentatus and P. Hereroensis Against Methicillin- and Vancomycin-Resistant Bacteria. Phytomedicine. 2006, 13, 267–271. doi:10.1016/j.phymed.2005.06.002.
  • Kebede, W.; Bisrat, D.; Asres, K. Free Radical Scavenging Activity-Guided Isolation of a Diterpenoid From Plectranthus Punctatus. Nat. Prod. Commun. 2011, 6, 1229–1232.
  • Razdan, T.K.; Kachroo, V.; Harkar, S.; Koul, G.L. Plectranthoic Acid A & B, two new Triterpenoids From Plectranthus Rugosus. Tetrahedron. 1982, 38, 991–992. doi: 10.1016/0040-4020(82)85077-1
  • Al Musayeib, N.M.; Amina, M.; Mohamed, G.A.; Ibrahim, S.R.M. Plectranol A, a New Sesquiterpene From Plectranthus Cylindraceus Growing in Saudi Arabia. Lett. Org. Chem. 2017, 14, 427–430. doi:10.2174/1570178614666170505112248.
  • Juch, M.; Ruedi, P. Isolation, Structure, and Biological Activities of Long-Chain Catechols of Plectranthus Sylvestvis (Labiatae). Helv. Chim. Acta 1997, 80, 436–448. doi:10.1002/hlca.19970800209.
  • Liu, G.; Ruedi, P. Phyllocladanes (13b-Kauranes) From Plectranthus Ambiguous. Phytochemistry. 1996, 41, 1563–1568. doi: 10.1016/0031-9422(95)00816-0
  • Hensch, M.; Eugster, C.H. Notiz Iiber das Vorkommen von 4’, 5-Dihydroxy-3,3’,6,7-Tetramethoxyflavon (Chrysosplenetin) in Plectranthus Marrubioides HOCHST (Labiatae. Helv. Chim. Acta. 1972, 55, 1610–1613. doi: 10.1002/hlca.19720550522
  • Khalik, K.N.A. A Systematic Revision of the Genus Plectranthus L. (Lamiaceae) in Saudi Arabia Based on Morphological, Palynological and Micromorphological Characters of Trichomes. Am. J. Plant. Sci. 2016, 7, 1429–1444. doi: 10.4236/ajps.2016.710137
  • Chaudhary, S.A. Flora of the Kingdom of the Saudi Arabia, Ministry of Agriculture and Water. Riyadh 2001, 2, 342–354.
  • Abulfatih, H.A. Medicinal Plants in South Western Saudi Arabia. Agriculture and Water Supply. Econ. Bot. 1987, 41, 354–360.
  • Al-Saleem, M.S.M.; Khan, M.; Alkhathlan, H.Z. A Detailed Study of the Volatile Components of Plectranthus Asirensis of Saudi Arabian Origin. Nat. Prod. Res. 2016, 30, 2360–2363. doi:10.1080/14786419.2016.1163693.
  • Marwah, M.B. Antimicrobial Activity of Plectranthus Asirensis Extract From Jazan Region. Life Sci. J. 2013, 10, 1880–1883.
  • Mandal, D.; Bolander, M.E.; Mukhopadhyay, D.; Sarkar, G.; Mukherjee, P. The use of Microorganisms for the Formation of Metal Nanoparticles and Their Application. Appl. Microbiol. Biotechnol. 2006, 69, 485–492. doi: 10.1007/s00253-005-0179-3
  • Sastry, M.; Ahmad, A.; Khan, M.I.; Kumar, R. Microbial Nanoparticle Production. In nanobiotechnology-concepts, Applications and Perspectives; Niemeyer CM, Mirkin CA., Eds.; Wiley-VCH. Weinheim, Germany. 2004, pp. 126–135.
  • Galdiero, S.; Falanga, A.; Vitiello, M.; Marra, V.; Galdiero, M. Silver Nanoparticles as Potential Antiviral Agents. Molecules. 2011, 16, 8894–8918. doi:10.3390/molecules16108894.
  • Omran, B.A.; Nassar, H.N.; Fatthallah, N.A.; Hamdy, A.; El-Shatoury, E.H.; El-Gendy, N.S. Characterization and Antimicrobial Activity of Silver Nanoparticles Mycosynthesized by Aspergillus Brasiliensis. J. App. Microbiol. 2018, 125, 370–380. doi: 10.1111/jam.13776
  • Feng, W.; Huang, T.; Gao, L.; Yang, X.; Deng, W.; Zhou, R.; Liu, H. Textile-supported Silver Nanoparticles as a Highly Efficient and Recyclable Heterogeneous Catalyst for Nitroaromatic Reduction at Room Temperature. RSC Adv. 2018, 8, 6288–6292. doi: 10.1039/C7RA13257C
  • Lili, L.; Yu, G.; Qiu, C.; PinPing, W.; Nan, L.; Rong, C.; Hua, H. Label-free Silver Nanoparticles for the Determination of Gentamicin. J. Nanosci. Nanotech. 2018, 18, 4501–4506. doi: 10.1166/jnn.2018.15310
  • Lee, K.S.; El-Sayed, M.A. Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B. 2006, 110, 19220–19225. doi:10.1021/jp062536y.
  • Mourato, A.; Gadanho, M.; Lino, A.R.; Tenreiro, R. Biosynthesis of Crystalline Silver and Gold Nanoparticles by Extremophilic Yeasts. Bioinorg. Chem. Appl. 2011, 2011, 2010–2018. doi: 10.1155/2011/546074
  • Haiza, H.; Azizan, A.; Mohidin, A.H.; Halin, D.S.C. Green Synthesis of Silver Nanoparticles Using Local Honey. Nano Hybrids. 2013, 4, 87–98. doi:10.4028/www.scientific.net/NH.4.87.
  • Kharissova, O.V.; Dias, H.V.R.; Kharisov, B.I.; Perez, B.O.; Perez, V.M.J. The Greener Synthesis of Nanoparticles. Trends Biotech. 2013, 31, 240–248. doi: 10.1016/j.tibtech.2013.01.003
  • Farias, C.B.; Ferreira Silva, A.; Diniz Rufino, R.; Moura Luna, J.; Gomes Souza, J.E.; Sarubbo, L.A. Synthesis of Silver Nanoparticles Using a Biosurfactant Produced in low-Cost Medium as Stabilizing Agent. Electron. J. Biotechnol. 2014, 17, 122–125. doi: 10.1016/j.ejbt.2014.04.003
  • Li, G.; He, D.; Qian, Y.; Guan, B.; Gao, S.; Cui, Y.; Yokoyama, K.; Wang, L. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus Terreus. Int. J. Mol. Sci. 2012, 13, 466–476. doi: 10.3390/ijms13010466
  • Kathriraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T. Green Synthesis of Silver Nanoparticles Using Marine Algae Caulerpa Racemosa and Their Antibacterial Activity Against Some Human Pathogens. Appl. Nanosci. 2015, 5, 499–504. doi: 10.1007/s13204-014-0341-2
  • Ananthi, V.; Siva Prakash, G.; Mohan Rasu, K.; Gangadevi, K.; Boobalan, T.; Raja, R.; Anand, K.; Sudhakar, M.; Chuturgoon, A.; Arun, A. Comparison of Integrated Sustainable Biodiesel and Antibacterial Nano Silver Production by Microalgal and Yeast Isolates. J. Photochem. Photobiol. B. 2018, 186, 232–242. doi:10.1016/j.jphotobiol.2018.07.021.
  • Eshghi, M.; Vaghari, H.; Najian, Y.; Najian, M.J.; Jafarizandeh-Malmiri, H.; Berenjian, A. Microwave–Assisted Green Synthesis of Silver Nanoparticles Using Juglans Regia Leaf Extract and Evaluation of Their Physico-Chemical and Antibacterial Properties. Antibiotics. 2018, 7 (68). doi: 10.3390/antibiotics7030068
  • Alarfaj, N.A.; Altamimi, S.A.; El-Tohamy, M.F.; Almahri, A.M. Enhanced SIA-Chemiluminescence Probes for Angiotensin II Receptor Antagonist Detection Using Silver and Gold Nanoparticles: Applications in Pharmaceutical Formulations. New J. Chem. 2018, 42, 3383–3393. doi:10.1039/C7NJ04896C.
  • Hughes, R.R.; Scown, D.; Lenehan, C.E. Sequential Injection Analysis with Chemiluminescence Detection for Rapid Monitoring of Commercial Calendula Officinalis Extractions. Phytochem. Anal. 2015, 26, 454–460. doi:10.102/pca.2580
  • Valizadeh, H.; Mahmoodi, K.; Alizadeh, Z.; Bahadori, M.B. Isolation and Structure Elucidation of Secondary Metabolites From Echinophora Platyloba DC From Iran. J. Med. Plants. 2014, 49, 1–21.
  • Ode, O.J.; Asuzu, I.U. Luteolin Isolate From the Methanol Extract Identified as the Single-Carbon Compound Responsible for Broad Antiulcer Activities of Cassia Singueana Leaves. IOSR. J. Pharm. 2014, 4, 17-23. http://www.iosrphr.org/papers/v4i10/C041017023.pdf
  • Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol-Leb. 1995, 28, 25–30. doi: 10.1016/S0023-6438(95)80008-5
  • http://nanocomposix.com/kb/silver/optical-properties, 2018.
  • UlAbdeen, S. Chemiluminescent Reactions Catalyzed by Nanoparticles of Gold, silver, and Gold/Silver Alloys, Thesis, 2012, 19-20. http://commons.emich.edu/theses
  • Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. The Effect of Reactive Oxygen Species on the Synthesis of Prostanoids From Arachidonic Acid. J. Physiol. Pharmacol. 2013, 64, 409–421. https://www.ncbi.nlm.nih.gov/pubmed/24101387
  • Aziz, N.M.Y.; Kim, J.; Cho, Y. Anti-inflammatory Effects of Luteolin: A Review of in Vitro, in Vivo, and in Silico Studies. J. Ethnopharmacol. 2018, 225, 342–358. doi:10.1016/j.jep.2018.05.019.
  • Jimenez-Suarez, V.; Nieto-Camacho, A.; Jiménez-Estrada, M.; Sanchez, B. Anti-inflammatory, Free Radical Scavenging and Alphaglucosidase Inhibitory Activities of Hamelia Patens and its Chemical Constituents. Pharm. Biol. 2016, 54, 1822–1830. doi: 10.3109/13880209.2015.1129544