3,815
Views
3
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

An expedient, chemoselective N-chloroacetylation of aminoalcohols under metal-free bio-compatible conditions

ORCID Icon &
Pages 534-543 | Received 23 Aug 2018, Accepted 31 Oct 2018, Published online: 13 Nov 2018

References

  • Pitzer, J.; Steiner, K. Amides in Nature and Biocatalysis. J. Biotechnol. 2016, 235, 32–46. doi:10.1016/j.jbiotec.2016.03.023.
  • Pattabiraman, V.R.; Bode, J.W. Rethinking Amide Bond Synthesis. Nature 2011, 480, 471–479. doi:10.1038/nature10702.
  • de Figueiredo, R.M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. doi:10.1021/acs.chemrev.6b00237.
  • Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-Scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. doi:10.1021/op500305s.
  • Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic Amide Formation From Non-Activated Carboxylic Acids and Amines. Chem. Soc. Rev. 2014, 43, 2714–2742. doi:10.1039/C3CS60345H.
  • Montalbetti, C.A.G.N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron 2005, 61, 10827–10852. http://www.ncbi.nlm.nih.gov/pubmed/12399580. doi: 10.1016/j.tet.2005.08.031
  • Spicer, C.D.; Davis, B.G. Selective Chemical Protein Modification. Nat. Commun. 2014, 5, 4740. doi:10.1038/ncomms5740.
  • Brown, D.A.; London, E. Structure and Function of Sphingolipid- and Cholesterol-Rich Membrane Rafts. J. Biol. Chem. 2000, 275, 17221–17224. doi:10.1074/jbc.R000005200.
  • Hannun, Y.A.; Obeid, L.M. Principles of Bioactive Lipid Signalling: Lessons From Sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. doi:10.1038/nrm2329.
  • Pruett, S.T.; Bushnev, A.; Hagedorn, K.; Adiga, M.; Haynes, C.A.; Sullards, M.C.; Liotta, D.C.; Merrill, A.H. Thematic Review Series: Sphingolipids. Biodiversity of Sphingoid Bases (“Sphingosines”) and Related Amino Alcohols. J. Lipid Res. 2008, 49, 1621–1639. doi:10.1194/jlr.R800012-JLR200.
  • Ohanian, J.; Ohanian, V. Sphingolipids in Mammalian Cell Signalling. Cell. Mol. Life Sci. 2001, 58, 2053–2068. doi:10.1007/PL00000836.
  • Simons, K.; Gerl, M.J. Revitalizing Membrane Rafts: New Tools and Insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688. doi: 10.1038/nrm2977
  • Brodowicz, J.; Przegaliński, E.; Müller, C.P.; Filip, M. Ceramide and Its Related Neurochemical Networks as Targets for Some Brain Disorder Therapies. Neurotox. Res. 2018, 33, 474–484. doi:10.1007/s12640-017-9798-6.
  • Click Reactions with Functional Sphingolipids Biol. Chem. 2018, 399, 1157. doi:10.1515/hsz-2018-0169.
  • Kim, S.; Cho, M.; Lee, T.; Lee, S.; Min, H.-Y.; Lee, S.K. Design, Synthesis, and Preliminary Biological Evaluation of a Novel Triazole Analogue of Ceramide. Bioorg. Med. Chem. Lett. 2007, 17, 4584–4587. doi:10.1016/j.bmcl.2007.05.086.
  • Sinkó, B.; Pálfi, M.; Béni, S.; Kökösi, J.; Takács-Novák, K. Synthesis and Characterization of Long-Chain Tartaric Acid Diamides as Novel Ceramide-Like Compounds. Molecules 2010, 15, 824–833. doi:10.3390/molecules15020824.
  • Reynolds, C.P.; Maurer, B.J.; Kolesnick, R.N. Ceramide Synthesis and Metabolism as a Target for Cancer Therapy. Cancer Lett. 2004, 206, 169–180. doi:10.1016/j.canlet.2003.08.034.
  • Mormeneo, D.; Casas, J.; Llebaria, A.; Delgado, A. Synthesis and Preliminary Antifungal Evaluation of a Library of Phytosphingolipid Analogues. Org. Biomol. Chem. 2007, 5, 3769–3777. doi:10.1039/B709421C.
  • Tadross, P.M.; Jacobsen, E.N. Site-selective Reactions: Remodelling by Diversity and Design. Nat. Chem. 2012, 4, 963–965. doi:10.1038/nchem.1509.
  • Afagh, N.A.; Yudin, A.K. Chemoselectivity and the Curious Reactivity Preferences of Functional Groups. Angew. Chem. Int. Ed. Engl. 2010, 49, 262–310. doi:10.1002/anie.200901317.
  • Young, I.S.; Baran, P.S. Protecting-group-free Synthesis as an Opportunity for Invention. Nat. Chem. 2009, 1, 193–205. doi:10.1038/nchem.216.
  • Vibhute, A.M.; Vidyasagar, A.; Sarala, S.; Sureshan, K.M. Regioselectivity Among Six Secondary Hydroxyl Groups: Selective Acylation of the Least Reactive Hydroxyl Groups of Inositol. Chem. Commun. 2012, 48, 2448–2450. doi:10.1039/C2CC17241K.
  • Vibhute, A.M.; Sureshan, K.M. H2SO4-silica: An Eco-Friendly Heterogeneous Catalyst for the Differential Protection of Myo-Inositol Hydroxyl Groups. RSC Adv. 2013, 3, 7321–7329. doi:10.1039/C3RA40506K.
  • Kristensen, T.E. Chemoselective O-Acylation of Hydroxyamino Acids and Amino Alcohols Under Acidic Reaction Conditions: History, Scope and Applications. Beilstein J. Org. Chem. 2015, 11, 446–468. doi:10.3762/bjoc.11.51.
  • Markey, S.P.; Dudding, T.; Wang, T.C. Base- and Acid-Catalyzed Interconversions of O-Acyl- and N-Acyl-Ethanolamines: A Cautionary Note for Lipid Analyses. J. Lipid Res. 2000, 41, 657–662. http://www.ncbi.nlm.nih.gov/pubmed/10744787.
  • Morcuende, A.; Ors, M.; Valverde, S.; Herradón, B. Microwave-Promoted Transformations: Fast and Chemoselective N-Acylation of Amino Alcohols Using Catalytic Amounts of Dibutyltin Oxide. Influence of the Power Output and the Nature of the Acylating Agent on the Selectivity. J. Org. Chem. 1996, 61, 5264–5270. doi:10.1021/jo9605511.
  • Mukaiyama, T.; Pai, F.-C.; Onaka, M.; Narasaka, K. A Useful Method For Selective Acylation Of Alcohols Using 2,2′-Bipyridyl-6-Yl Carboxylate And Cesium Fluoride. Chem. Lett. 1980, 9, 563–566. doi:10.1246/cl.1980.563.
  • Parmentier, M.; Wagner, M.K.; Magra, K.; Gallou, F. Selective Amidation of Unprotected Amino Alcohols Using Surfactant-in-Water Technology: A Highly Desirable Alternative to Reprotoxic Polar Aprotic Solvents. Org. Process Res. Dev. 2016, 20, 1104–1107. doi:10.1021/acs.oprd.6b00133.
  • Kirk-Othmer. In Kirk-Othmer Encyclopedia of Chemical Technology; Othmer, K., Ed., 5th ed; Wiley: New York, 2004; Vol. 1.
  • Olszewska, A.; Pohl, R.; Brázdová, M.; Fojta, M.; Hocek, M. Chloroacetamide-Linked Nucleotides and DNA for Cross-Linking with Peptides and Proteins. Bioconjug. Chem. 2016, 27, 2089–2094. doi:10.1021/acs.bioconjchem.6b00342.
  • Wuts, P.G.M.; Greene, T.W. Greene’s Protective Groups in Organic Synthesis Fourth Edition, Wiley-Interscience: New Jersey, 2007.
  • Kottari, N.; Chabre, Y.M.; Shiao, T.C.; Rej, R.; Roy, R. Efficient and Accelerated Growth of Multifunctional Dendrimers Using Orthogonal Thiol-ene and SN2 Reactions. Chem. Commun. (Cambridge, UK) 2014, 50, 1983–1985. doi:10.1039/c3cc46633g.
  • Sharma, R.; Kottari, N.; Chabre, Y.M.; Abbassi, L.; Shiao, T.C.; Roy, R. A Highly Versatile Convergent/Divergent “Onion Peel” Synthetic Strategy Toward Potent Multivalent Glycodendrimers. Chem. Commun. (Camb). 2014, 50, 13300–13303. doi:10.1039/c4cc06191h.
  • Vijayalakshmi, N.; Maitra, U. Hydroxyl-terminated Dendritic Oligomers From Bile Acids: Synthesis and Properties. J. Org. Chem. 2006, 71, 768–774. doi:10.1021/jo052173i.
  • Vinogradov, S.A. Arylamide Dendrimers with Flexible Linkers via Haloacyl Halide Method. Org. Lett. 2005, 7, 1761–1764. doi:10.1021/ol050341n.
  • Bergmann, M.; Michaud, G.; Visini, R.; Jin, X.; Gillon, E.; Stocker, A.; Imberty, A.; Darbre, T.; Reymond, J.-L. Multivalency Effects on Pseudomonas aeruginosa Biofilm Inhibition and Dispersal by Glycopeptide Dendrimers Targeting Lectin LecA. Org. Biomol. Chem. 2016, 14, 138–148. doi:10.1039/C5OB01682G.
  • Kiso, M.; Anderson, L. Protected Glycosides and Disaccharides of 2-Amino-2-Deoxy-d-Glucopyranose by Ferric Chloride-Catalyzed Coupling. Carbohydr. Res. 1985, 136, 309–323. doi:10.1016/0008-6215(85)85205-8.
  • Bongat, A.F.G.; Demchenko, A.V. Recent Trends in the Synthesis of O-Glycosides of 2-Amino-2-Deoxysugars. Carbohydr. Res. 2007, 342, 374–406. doi:10.1016/j.carres.2006.10.021.
  • Subramanian, N.; Sreemanthula, J.B.; Balaji, B.; Kanwar, J.R.; Biswas, J.; Krishnakumar, S. A Strain-Promoted Alkyne–Azide Cycloaddition (SPAAC) Reaction of a Novel EpCAM Aptamer–Fluorescent Conjugate for Imaging of Cancer Cells. Chem. Commun. 2014, 50, 11810–11813. doi:10.1039/C4CC02996H.
  • Balaji, B.S.; Lewis, M.R. Double Exponential Growth of Aliphatic Polyamide Dendrimers via AB2 Hypermonomer Strategy. Chem. Commun. (Cambridge, UK) 2009. doi:10.1039/b903948a.
  • Balaji, B.S.; Gallazzi, F.; Jia, F.; Lewis, M.R. An Efficient, Convenient Solid-Phase Synthesis of Amino Acid-Modified Peptide Nucleic Acid Monomers and Oligomers. Bioconjug. Chem. 2006, 17, 551–558. doi:10.1021/bc0502208.
  • Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, Jr, J.L.; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.a., Wells, A., et al. Key Green Chemistry Research Areas: A Perspective From Pharmaceutical Manufacturers. Green Chem. 2007, 9, 411–420. doi:10.1039/b703488c.
  • Harte, A.J.; Gunnlaugsson, T. Synthesis of Alpha-Chloroamides in Water. Tetrahedron Lett. 2006, 47, 6321–6324. doi:10.1016/j.tetlet.2006.06.090.
  • Kommi, D.N.; Kumar, D.; Chakraborti, A.K. “All Water Chemistry” for a Concise Total Synthesis of the Novel Class Anti-Anginal Drug (RS), (R), and (S)-Ranolazine. Green Chem. 2013, 15, 756. doi:10.1039/c3gc36997h.
  • Loeser, E.; Prasad, K.; Repic, O. Selective N-Alkylation Of Primary Amines With Chloroacetamides Under Ph-Controlled Aqueous Conditions. Synth. Commun. 2002, 32, 403–409. doi:10.1081/SCC-120002124.
  • El-Faham, A.; Albericio, F. Peptide Coupling Reagents, More Than a Letter Soup. Chem. Rev. 2011, 111, 6557–6602. doi:10.1021/cr100048w.
  • Ruff, F.; Farkas, O. Concerted SN2 Mechanism for the Hydrolysis of Acid Chlorides: Comparisons of Reactivities Calculated by the Density Functional Theory with Experimental Data. J. Phys. Org. Chem. 2011, 24, 480–491. doi:10.1002/poc.1790.
  • Carlson, D.L.; Than, K.D.; Roberts, A.L. Acid- and Base-Catalyzed Hydrolysis of Chloroacetamide Herbicides. J. Agric. Food Chem. 2006, 54, 4740–4750. doi:10.1021/jf0530704.
  • Bentley, T.W.; Harris, H.C.; Ryu, Z.H.; Lim, G.T.; Sung, D.D.; Szajda, S.R. Mechanisms of Solvolyses of Acid Chlorides and Chloroformates. Chloroacetyl and Phenylacetyl Chloride as Similarity Models. J. Org. Chem. 2005, 70, 8963–8970. doi:10.1021/jo0514366.
  • Cope, A.C.; Hancock, E.M. Benzoates, p-Aminobenzoates and Phenylurethans of 2-Alkylaminoethanols. J. Am. Chem. Soc. 1944, 66, 1448–1453. doi:10.1021/ja01237a009.