5,891
Views
8
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

An expedient and rapid green chemical synthesis of N-chloroacetanilides and amides using acid chlorides under metal-free neutral conditions

ORCID Icon &
Pages 552-558 | Received 26 Aug 2018, Accepted 02 Nov 2018, Published online: 19 Nov 2018

References

  • Pattabiraman, V.R.; Bode, J.W. Rethinking Amide Bond Synthesis. Nature 2011, 480, 471–479. doi:10.1038/nature10702. http://www.ncbi.nlm.nih.gov/pubmed/22193101.
  • Pitzer, J.; Steiner, K. Amides in Nature and Biocatalysis. J. Biotechnol. 2016, 235, 32–46. doi:10.1016/j.jbiotec.2016.03.023.
  • Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Catalytic Amide Formation from Non-activated Carboxylic Acids and Amines. Chem. Soc. Rev. 2014, 43, 2714–2742. doi:10.1039/C3CS60345H.
  • Montalbetti, C.A.G.N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron 2005, 61, 10827–10852. doi:10.1016/j.tet.2005.08.031.
  • Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. The Thermal and Boron-catalyzed Direct Amide Formation Reactions: Mechanistically Understudied yet Important Processes. Chem. Commun. 2010, 46, 1813–1823. doi:10.1039/b923093a.
  • Zhang, L.; Wang, X.j.; Wang, J.; Grinberg, N.; Krishnamurthy, D.; Senanayake, C.H. An Improved Method of Amide Synthesis Using Acyl Chlorides. Tetrahedron Lett. 2009, 50, 2964–2966. doi:10.1016/j.tetlet.2009.03.220.
  • Dunetz, J.R.; Magano, J.; Weisenburger, G.A. Large-scale Applications of Amide Coupling Reagents for the Synthesis of Pharmaceuticals. Org. Process Res. Dev. 2016, 20, 140–177. doi:10.1021/op500305s.
  • de Figueiredo, R.M.; Suppo, J.-S.; Campagne, J.-M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. doi:10.1021/acs.chemrev.6b00237.
  • Kenawy, E.R.; Abdel-Hay, F.I.; El-Shanshoury, A.E.R.R.; El-Newehy, M.H. Biologically Active Polymers. V. Synthesis and Antimicrobial Activity of Modified Poly(Glycidyl Methacrylate-co-2-Hydroxyethyl Methacrylate) Derivatives with Quaternary Ammonium and Phosphonium Salts. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 2384–2393. doi:10.1002/pola.10325. http://www.ncbi.nlm.nih.gov/pubmed/9685881.
  • García-Álvarez, R.; Crochet, P.; Cadierno, V. Metal-catalyzed Amide Bond Forming Reactions in an Environmentally Friendly Aqueous Medium: Nitrile Hydrations and Beyond. Green Chem. 2013, 15, 46–66. doi:10.1039/C2GC36534K.
  • Ranu, B.C.; Dey, S.S.; Hajra, A. Highly Efficient Acylation of Alcohols, Amines and Thiols Under Solvent-free and Catalyst-free Conditions. Green Chem. 2003, 5, 44–46. doi:10.1039/b211238h.
  • Papadopoulos, G.N.; Kokotos, C.G. One-pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes. J. Org. Chem. 2016, 81, 7023–7028. doi:10.1021/acs.joc.6b00488.
  • Lanigan, R.M.; Starkov, P.; Sheppard, T.D. Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH 2 CF 3) 3. J. Org. Chem. 2013, 78, 4512–4523. doi:10.1021/jo400509n.
  • Salam, N.; Kundu, S.K.; Molla, R.A.; Mondal, P.; Bhaumik, A.; Islam, S.M. Ag-Grafted Covalent Imine Network Material for One-pot Three-component Coupling and Hydration of Nitriles to Amides in Aqueous Medium. RSC Adv. 2014, 4, 47593–47604. doi:10.1039/C4RA07622B.
  • Carey, J.S.; Laffan, D.; Thomson, C.; Williams, M.T. Analysis of the Reactions Used for the Preparation of Drug Candidate Molecules. Org. Biomol. Chem. 2006, 4, 2337. doi:10.1039/b602413k.
  • Roughley, S.D.; Jordan, A.M. The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. J. Med. Chem. 2011, 54, 3451–3479. doi:10.1021/jm200187y. http://www.ncbi.nlm.nih.gov/pubmed/22193101.
  • Montalbetti, C.A.G.N.; Falque, V. Amide Bond Formation and Peptide Coupling. Tetrahedron 2005, 61, 10827–10852. http://www.ncbi.nlm.nih.gov/pubmed/12399580. doi: 10.1016/j.tet.2005.08.031
  • Krusemark, C.J.; Frey, B.L.; Smith, L.M.; Belshaw, P.J. Complete Chemical Modification of Amine and Acid Functional Groups of Peptides and Small Proteins. Methods Mol. Biol. 2011, 753, 77–91. doi:10.1007/978-1-61779-148-2_6. http://www.ncbi.nlm.nih.gov/pubmed/21604117.
  • Huang, H.; Lin, S.; Garcia, B.A.; Zhao, Y. Quantitative Proteomic Analysis of Histone Modifications. Chem. Rev. 2015, 115, 2376–2418. doi:10.1021/cr500491u.
  • Liu, Z.; Cao, J.; Gao, X.; Zhou, Y.; Wen, L.; Yang, X.; Yao, X.; Ren, J.; Xue, Y. CPLA 1.0: An Integrated Database of Protein Lysine Acetylation. Nucleic Acids Res. 2011, 39, D1029–D1034. doi:10.1093/nar/gkq939.
  • Liu, Z.; Wang, Y.; Gao, T.; Pan, Z.; Cheng, H.; Yang, Q.; Cheng, Z.; Guo, A.; Ren, J.; Xue, Y. CPLM: A Database of Protein Lysine Modifications. Nucleic Acids Res. 2014, 42, D531–D536. doi:10.1093/nar/gkt1093.
  • El-Faham, A.; Albericio, F. Peptide Coupling Reagents, More than a Letter Soup. Chem. Rev. 2011, 111, 6557–6602. doi:10.1021/cr100048w.
  • Subramanian, N.; Sreemanthula, J.B.; Balaji, B.; Kanwar, J.R.; Biswas, J.; Krishnakumar, S. A Strain-Promoted Alkyne–Azide Cycloaddition (SPAAC) Reaction of a Novel EpCAM Aptamer–Fluorescent Conjugate for Imaging of Cancer Cells. Chem. Commun. 2014, 50, 11810–11813. doi:10.1039/C4CC02996H.
  • Balaji, B.S.; Lewis, M.R. Double Exponential Growth of Aliphatic Polyamide Dendrimers via AB2 Hypermonomer Strategy. Chem. Commun. 2009. doi:10.1039/b903948a. http://www.ncbi.nlm.nih.gov/pubmed/19617994.
  • Balaji, B.S.; Gallazzi, F.; Jia, F.; Lewis, M.R. An Efficient, Convenient Solid-phase Synthesis of Amino Acid-modified Peptide Nucleic Acid Monomers and Oligomers. Bioconjug. Chem. 2006, 17, 551–558. doi:10.1021/bc0502208. http://www.ncbi.nlm.nih.gov/pubmed/16536490.
  • Kirk-Othmer. In Kirk-Othmer Encyclopedia of Chemical Technology; Othmer, K., Ed., 5th ed; Wiley: Hoboken, NJ, 2004; Vol. 1.
  • Olszewska, A.; Pohl, R.; Brázdová, M.; Fojta, M.; Hocek, M. Chloroacetamide-linked Nucleotides and DNA for Cross-linking with Peptides and Proteins. Bioconjug. Chem. 2016, 27, 2089–2094. doi:10.1021/acs.bioconjchem.6b00342.
  • Wuts, P.G.M.; Greene, T.W. Greene’s Protective Groups in Organic Synthesis, 4th ed.; Wiley-Interscience: Hoboken, NJ, 2007.
  • Jacobs, W.A.; Heidelberger, M.; Rolf, I.P. On Certain Aromatic Amines and Chloroacetyl Derivatives. J. Am. Chem. Soc. 1919, 41, 458–474. doi:10.1021/ja01460a022.
  • Ronwin, E. Direct Acylation of Α-Amino Acids and of Α-Hydroxy Acid Derivatives. J. Org. Chem. 1953, 18, 127–132. doi:10.1021/jo01130a002.
  • Speziale, A.J.; Hamm, P.C. Preparation of Some New 2-Chloroacetamides. J. Am. Chem. Soc. 1956, 78, 2556–2559. doi:10.1021/ja01592a061.
  • Surrey, A.R.; Rukwid, M.K. New Amebacides. II. The Preparation of Some N-Alkyl-N-benzylhaloacetamides. J. Am. Chem. Soc. 1955, 77, 3798–3801. doi:10.1021/ja01619a035.
  • Kashiwabara, T.; Fuse, K.; Hua, R.; Tanaka, M. Rhodium-complex-catalyzed Addition Reactions of Chloroacetyl Chlorides to Alkynes. Org. Lett. 2008, 10, 5469–5472. doi:10.1021/ol802260w. http://www.ncbi.nlm.nih.gov/pubmed/18991444.
  • Ottoni, O.; Neder, A.V.; Dias, A.K.; Cruz, R.P.; Aquino, L.B. Acylation of Indole Under Friedel-Crafts Conditions – an Improved Method to Obtain 3-Acylindoles Regioselectively. Org. Lett. 2001, 3, 1005–1007. doi:10.1021/ol007056i. http://www.ncbi.nlm.nih.gov/pubmed/11277781.
  • Suresh, M.; Kumar, N.; Veeraraghavaiah, G.; Hazra, S.; Singh, R.B. Total Synthesis of Coprinol. J. Nat. Prod. 2016, 79, 2740–2743. doi:10.1021/acs.jnatprod.6b00277.
  • Lindley, H. The Reaction of Thiol Compounds and Chloroacetamide. Biochem. J. 1962, 82, 418–425. doi:10.1016/0041-008X(80)90089-7. http://www.ncbi.nlm.nih.gov/pubmed/14417169. doi: 10.1042/bj0820418
  • Yi-An, L.; Clavijo, P.; Galantino, M.; Zhi-Yi, S.; Wen, L.; Tam, J.P. Chemically Unambiguous Peptide Immunogen: Preparation, Orientation and Antigenicity of Purified Peptide Conjugated to the Multiple Antigen Peptide System. Mol. Immunol. 1991, 28, 623–630. doi:10.1016/0161-5890(91)90131-3.
  • Shafer, D.E.; Inman, J.K.; Lees, A. Reaction of Tris(2-Carboxyethyl)Phosphine (TCEP) with Maleimide and α-Haloacyl Groups: Anomalous Elution of TCEP by Gel Filtration. Anal. Biochem. 2000, 282, 161–164. doi:10.1006/abio.2000.4609.
  • Biomol, O.; Monsó, M.; Kowalczyk, W.; Andreu, D.; Torre, B.G.D. Reverse Thioether Ligation Route to Multimeric Peptide Antigens. Org. Biomol. Chem. 2012, 10, 3116–3121. doi:10.1039/c2ob06819b. http://www.ncbi.nlm.nih.gov/pubmed/22407078.
  • Prat, D.; Wells, A.; Hayler, J.; Sneddon, H.; McElroy, C.R.; Abou-Shehada, S.; Dunn, P.J. CHEM21 Selection Guide of Classical- and Less Classical-Solvents. Green Chem. 2016, 18, 288–296. doi:10.1039/C5GC01008J.
  • Young, I.S.; Baran, P.S. Protecting-group-free Synthesis as an Opportunity for Invention. Nat. Chem. 2009, 1, 193–205. doi:10.1038/nchem.216. http://www.ncbi.nlm.nih.gov/pubmed/21378848.
  • Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.L., Jr.; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.a., Wells, A., et al. Key Green Chemistry Research Areas: A Perspective From Pharmaceutical Manufacturers. Green Chem. 2007, 9, 411–420. doi:10.1039/b703488c.
  • Harte, A.J.; Gunnlaugsson, T. Synthesis of Alpha-chloroamides in Water. Tetrahedron Lett. 2006, 47, 6321–6324. doi:10.1016/j.tetlet.2006.06.090.
  • Kommi, D.N.; Kumar, D.; Chakraborti, A.K. “All Water Chemistry” for a Concise Total Synthesis of the Novel Class Anti-anginal Drug (RS), (R), and (S)-Ranolazine. Green Chem. 2013, 15, 756. doi:10.1039/c3gc36997h.
  • Loeser, E.; Prasad, K.; Repic, O. Selective N-Alkylation of Primary Amines with Chloroacetamides Under Ph-Controlled Aqueous Conditions. Synth. Commun. 2002, 32, 403–409. doi:10.1081/SCC-120002124.
  • Ruff, F.; Farkas, O. Concerted SN2 Mechanism for the Hydrolysis of Acid Chlorides: Comparisons of Reactivities Calculated by the Density Functional Theory with Experimental Data. J. Phys. Org. Chem. 2011, 24, 480–491. doi:10.1002/poc.1790.
  • Carlson, D.L.; Than, K.D.; Roberts, A.L. Acid- and Base-catalyzed Hydrolysis of Chloroacetamide Herbicides. J. Agric. Food Chem. 2006, 54, 4740–4750. doi:10.1021/jf0530704. http://www.ncbi.nlm.nih.gov/pubmed/16787023.
  • Bentley, T.W.; Harris, H.C.; Ryu, Z.H.; Lim, G.T.; Sung, D.D.; Szajda, S.R. Mechanisms of Solvolyses of Acid Chlorides and Chloroformates. Chloroacetyl and Phenylacetyl Chloride as Similarity Models. J. Org. Chem. 2005, 70, 8963–8970. doi:10.1021/jo0514366. http://www.ncbi.nlm.nih.gov/pubmed/16238334.
  • Park, J.K.; Shin, W.K.; An, D.K. New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(Amino)Aluminum. Bull. Korean Chem. Soc. 2013, 34, 1592–1594. doi:10.5012/bkcs.2013.34.5.1592.
  • Leggio, A.; Belsito, E.L.; Di Gioia, M.L.; Leotta, V.; Romio, E.; Siciliano, C.; Liguori, A. Silver Acetate-assisted Formation of Amides from Acyl Chlorides. Tetrahedron Lett. 2015, 56, 199–202. doi:10.1016/j.tetlet.2014.11.067.