1,947
Views
47
CrossRef citations to date
0
Altmetric
RESEARCH REVIEW

A novel poly(ethyleneoxide)-based magnetic nanocomposite catalyst for highly efficient multicomponent synthesis of pyran derivatives

ORCID Icon, &
Pages 573-582 | Received 04 Mar 2018, Accepted 09 Nov 2018, Published online: 26 Nov 2018

References

  • Maleki, A. Fe3O4/SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines. Tetrahedron. 2012, 68 (38), 7827–7833. doi: 10.1016/j.tet.2012.07.034
  • Maleki, A. One-Pot Multicomponent Synthesis of Diazepine Derivatives using Terminal Alkynes in the Presence Of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles. Tetrahedron Lett. 2013, 54 (16), 2055–2059. doi: 10.1016/j.tetlet.2013.01.123
  • Maleki, A.; Kamalzare, M. Fe3O4@cellulose Composite Nanocatalyst: Preparation, Characterization and application in the Synthesis Of Benzodiazepines. Catal. Commun. 2014, 53, 67–71. doi: 10.1016/j.catcom.2014.05.004
  • Maleki, A. Green Oxidation Protocol: Selective Conversions of Alcohols and Alkenes to Aldehydes, Ketones and Epoxides by Using a New Multiwall Carbon Nanotube-Based Hybrid Nanocatalyst via Ultrasound Irradiation. Ultrason. Sonochem. 2018, 40, 460–464. doi: 10.1016/j.ultsonch.2017.07.020
  • Brahmachari, G.; Banerjee, B. Facile and One-pot Access to Diverse and Densely Functionalized 2-Amino-3-Cyano-4 H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst. ACS Sustain. Chem. Eng. 2013, 2 (3), 411–422. doi: 10.1021/sc400312n
  • Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A Facile One-pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-Pyrans and 2-Amino-5-oxo-5, 6, 7, 8-Tetrahydro-4H-Chromenes. Eur. J. Med. Chem 2009, 44 (9), 3805–3809. doi: 10.1016/j.ejmech.2009.04.017
  • Pratap, U.R.; Jawale, D.V.; Netankar, P.D.; Mane, R.A. Baker’s Yeast Catalyzed One-pot Three-Component Synthesis of Polyfunctionalized 4H-Pyrans. Tetrahedron Lett. 2011, 52 (44), 5817–5819. doi: 10.1016/j.tetlet.2011.08.135
  • Chen, C.; Lu, M.; Liu, Z.; Wan, J.; Tu, Z.; Zhang, T.; Yan, M. Synthesis and Evaluation of 2-Amino-4H-Pyran-3-Carbonitrile Derivatives as Antitubercular Agents. Open J. Med. Chem 2103, 3, 128–135. doi: 10.4236/ojmc.2013.34015
  • McKee, T.C.; Covington, C.D.; Fuller, R.W.; Bokesch, H.R.; Young, S.; Cardellina, J.H.; Kadushin, M.R.; Soejarto, D.D.; Stevens, P.F.; Cragg, G.M. Pyranocoumarins from Tropical Species of the Genus Calophyllum: A Chemotaxonomic Study of Extracts in the National Cancer Institute Collection 1. J. Nat. Prod 1998, 61 (10), 1252–1256. doi: 10.1021/np980140a
  • Wickel, S.M.; Citron, C.A.; Dickschat, J.S. 2H-Pyran2-ones from Trichoderma viride and Trichoderma asperellum. Eur. J. Org. Chem. 2013, 14, 2906–2913. doi: 10.1002/ejoc.201300049
  • Sultana, N.; Waterman, P.G. 3-Monoterpenyl-2, 4-Dioxygenated Quinoline Alkaloids from the Aerial Parts of Halfordia kendack. Phytochemistry 2001, 58 (2), 329–332. doi: 10.1016/S0031-9422(01)00196-0
  • Nakashima, K.I.; Oyama, M.; Ito, T.; Witono, J.R.; Darnaedi, D.; Tanaka, T.; Murata, J.; Iinuma, M. Melicodenines A and B, Novel Diels–Alder Type Adducts Isolated from Melicope denhamii. Tetrahedron Lett. 2011, 52 (36), 4694–4696. doi: 10.1016/j.tetlet.2011.07.013
  • Nakashima, K.I.; Oyama, M.; Ito, T.; Akao, Y.; Witono, J.R.; Darnaedi, D.; Tanaka, T.; Murata, J.; Iinuma, M. Novel Quinolinone Alkaloids Bearing a Lignoid Moiety and Related Constituents in the Leaves of Melicope denhamii. Tetrahedron 2012, 68 (10), 2421–2428. doi: 10.1016/j.tet.2012.01.007
  • Armesto, D.; Horspool, W.M.; Martin, N.; Ramos, A.; Seoane, C. Synthesis of Cyclobutenes by the Novel Photochemical Ring Contraction of 4-Substituted 2-Amino-3, 5-Dicyano-6-Phenyl-4H-Pyrans. J. Org. Chem 1989, 54 (13), 3069–3072. doi: 10.1021/jo00274a021
  • Armesto, D.; Horspool, W.M.; Martin, N.; Ramos, A.; Seoane, C. A Novel Photochemical Ring Contraction of 4 H-Pyrans. A New Route to Selectively Substituted Cyclobutenes. J. Chem. Soc., Chem. Commun 1987, 16, 1231–1232. doi: 10.1039/c39870001231
  • Tabassum, S.; Govindaraju, S.; Pasha, M.A. Ultrasound Mediated, Iodine Catalyzed Green Synthesis of Novel 2-Amino-3-Cyano-4H-Pyran Derivatives. Ultrason. Sonochem. 2015, 24, 1–7. doi: 10.1016/j.ultsonch.2014.12.006
  • Nazeruddin, G.M.; Shaikh, Y.I.; Shaikh, A.A. By Using Ammonia Solution as a Catalyst a Multicomponent Reaction can be Directed to Land up to Polyfunctional Pyridine or Pyran Derivatives. Res. J. Pharm. Biol. Chem. Sci 2014, 5, 1773–1779.
  • Babu, N.S.; Pasha, N.; Rao, K.V.; Prasad, P.S.; Lingaiah, N. A Heterogeneous Strong Basic Mg/La Mixed Oxide Catalyst for Efficient Synthesis of Polyfunctionalized Pyrans. Tetrahedron Lett. 2008, 49 (17), 2730–2733. doi: 10.1016/j.tetlet.2008.02.154
  • Banerjee, S.; Horn, A.; Khatri, H.; Sereda, G. A Green One-pot Multicomponent Synthesis of 4H-Pyrans and Polysubstituted Aniline Derivatives of Biological, Pharmacological, and Optical Applications Using Silica Nanoparticles as Reusable Catalyst. Tetrahedron Lett. 2011, 52 (16), 1878–1881. doi: 10.1016/j.tetlet.2011.02.031
  • Safaei-Ghomi, J.; Teymuri, R.; Shahbazi-Alavi, H.; Ziarati, A. SnCl2/Nano SiO2: A Green and Reusable Heterogeneous Catalyst for the Synthesis of Polyfunctionalized 4H-Pyrans. Chin. Chem. Lett. 2013, 24 (10), 921–925. doi: 10.1016/j.cclet.2013.06.021
  • Heravi, M.M.; Beheshtiha, Y.S.; Pirnia, Z.; Sadjadi, S.; Adibi, M. One-pot, Three-Component Synthesis of 4 H-Pyrans Using Cu (II) Oxymetasilicate. Synth. Commun. 2009, 39 (20), 3663–3667. doi: 10.1080/00397910902796102
  • Kharbangar, I.; Rohman, M.R.; Mecadon, H.; Myrboh, B. KF-Al2O3 as an Efficient and Recyclable Basic Catalyst for the Synthesis of 4H-Pyran-3-Carboxylates and 5-Acetyl-4H-Pyrans. Int. J. Org. Chem. 2012, 2, 282–286. doi: 10.4236/ijoc.2012.23038
  • Peng, Y.; Song, G. Amino-functionalized Ionic Liquid as Catalytically Active Solvent for Microwave-Assisted Synthesis of 4H-Pyrans. Catal. Commun. 2007, 8 (2), 111–114. doi: 10.1016/j.catcom.2006.05.031
  • Goli-Jolodar, O.; Shirini, F.; Seddighi, M. An Efficient and Practical Synthesis of Specially 2-Amino-4H-Pyrans Catalyzed by C4(DABCO-SO3H)2·4Cl. Dyes Pigm. 2016, 133, 292–303. doi: 10.1016/j.dyepig.2016.06.001
  • Rahila; Rai, P.; Ibad, A.; Sagir, H.; Siddiqui, I.R. Chitosan-CTAB: An Efficient Aqueous Micellar System for the Sequential One-Pot Synthesis of Highly Functionalized 2-Amino-4H-Pyrans. Chem. Sel. 2016, 1 (7), 1300–1304.
  • Nasr-Esfahani, M.; Hoseini, S.J.; Montazerozohori, M.; Mehrabi, R.; Nasrabadi, H. Magnetic Fe3O4 Nanoparticles: Efficient and Recoverable Nanocatalyst for the Synthesis of Polyhydroquinolines and Hantzsch 1, 4-Dihydropyridines Under Solvent-Free Conditions. J. Mol. Catal. A: Chem 2014, 382, 99–105. doi: 10.1016/j.molcata.2013.11.010
  • Azizi, M.; Maleki, A.; Hakimpoor, F.; Ghalavand, R.; Garavand, A. A Mild, Efficient and Highly Selective Oxidation of Sulfides to Sulfoxides Catalyzed by Lewis Acid–Urea–Hydrogen Peroxide Complex at Room Temperature. Catal. Lett. 2017, 147 (8), 2173–2177. doi: 10.1007/s10562-017-2126-1
  • Ji, J.; Zeng, P.; Ji, S.; Yang, W.; Liu, H.; Li, Y. Catalytic Activity of Core–Shell Structured Cu/Fe3O4@SiO2 Microsphere Catalysts. Catal. Today 2010, 158 (3), 305–309. doi: 10.1016/j.cattod.2010.03.074
  • Emdadi, Z.; Asim, N.; Hassan Amin, M.; Yarmo, M.A.; Maleki, A.; Azizi, M.; Sopian, K. Development of Green Geopolymer Using Agricultural and Industrial Waste Materials with High Water Absorbency. Appl. Sci. 2017, 7, 514–528. doi: 10.3390/app7050514
  • Zeng, T.; Chen, W.-W.; Cirtiu, C.M.; Moores, A.; Song, G.; Li, C.-J. Fe3O4 Nanoparticles: a Robust and Magnetically Recoverable Catalyst for Three-Component Coupling of Aldehyde, Alkyne and Amine. Green Chem. 2010, 12 (4), 570–573. doi: 10.1039/b920000b
  • Safari, J.; Javadian, L. A one-pot Synthesis of 5, 5-Disubstituted Hydantoin Derivatives Using Magnetic Fe3O4 Nanoparticles as a Reusable Heterogeneous Catalyst. C. R. Chim 2013, 16 (12), 1165–1171. doi: 10.1016/j.crci.2013.06.005
  • Azizi, M.; Maleki, A.; Hakimpoor, F.; Firouzi-Haji, R.; Ghassemi, M.; Rahimi, J. Green Approach for Highly Efficient Synthesis of Polyhydroquinolines Using Fe3O4@PEO-SO3H as a Novel and Recoverable Magnetic Nanocomposite Catalyst. Lett. Org. Chem. 2018, 15 (9), 753–759. doi: 10.2174/1570178615666180126155204
  • Kiasat, A.R.; Davarpanah, J. Fe3O4@Silica Sulfuric Acid Nanoparticles: An Efficient Reusable Nanomagnetic Catalyst as Potent Solid Acid for One-pot Solvent-Free Synthesis of Indazolo [2, 1-b] Phthalazine-Triones and Pyrazolo [1, 2-b] Phthalazine-Diones. J. Mol. Catal. A: Chem. 2013, 373, 46–54. doi: 10.1016/j.molcata.2013.03.003
  • Mrówczyński, R.; Nan, A.; Liebscher, J. Magnetic Nanoparticle-Supported Organocatalysts – an Efficient way of Recycling and Reuse. RSC Adv. 2014, 4 (12), 5927–5952. doi: 10.1039/c3ra46984k
  • Ji, J.; Zeng, P.; Ji, S.; Yang, W.; Liu, H.; Li, Y. Catalytic Activity of Core–Shell Structured Cu/Fe3O4@SiO2 Microsphere Catalysts. Catal. Today 2010, 158 (3), 305–309. doi: 10.1016/j.cattod.2010.03.074
  • Maleki, A. Synthesis of Imidazo [1, 2-α] Pyridines Using Fe3O4@SiO2 as an Efficient Nanomagnetic Catalyst via a One-Pot Multicomponent Reaction. Helv. Chim. Acta. 2014, 97 (4), 587–593. doi: 10.1002/hlca.201300244
  • Rahimi, R.; Maleki, A.; Maleki, S. Synthesis and Characterization of a New Magnetic Bromochromate Hybrid Nanomaterial with Triethylamine Surface Modified Iron Oxide Nanoparticles. Chin. Chem. Lett 2014, 25 (6), 919–922. doi: 10.1016/j.cclet.2014.05.006
  • Maleki, A.; Kamalzare, M. An Efficient Synthesis of Benzodiazepine Derivatives via a One-pot, Three-Component Reaction Accelerated by a Chitosan-Supported Superparamagnetic Iron Oxide Nanocomposite. Tetrahedron Lett. 2014, 55 (50), 6931–6934. doi: 10.1016/j.tetlet.2014.10.120
  • Meng, Y.; Chen, D.; Sun, Y.; Jiao, D.; Zeng, D.; Liu, Z. Adsorption of Cu2+ Ions Using Chitosan-Modified Magnetic Mn Ferrite Nanoparticles Synthesized by Microwave-Assisted Hydrothermal Method. Appl. Surf. Sci. 2015, 324 (1), 745–750. doi: 10.1016/j.apsusc.2014.11.028
  • Chen, S.; Li, Y.; Guo, C.; Wang, J.; Ma, J.; Liang, X.; Yang, L.-R.; Liu, H.-Z. Temperature-responsive Magnetite/PEO−PPO−PEO Block Copolymer Nanoparticles for Controlled Drug Targeting Delivery. Langmuir 2007, 23 (25), 12669–12676. doi: 10.1021/la702049d
  • Tan, G.; Li, Z. Highly Active, Stable, and Recyclable Magnetic Nano-Size Solid Acid Catalysts: Efficient Esterification of Free Fatty Acid in Grease to Produce Biodiesel. Green Chem. 2012, 14 (11), 3077–3086. doi: 10.1039/c2gc35779h
  • Jalili-Baleh, L.; Mohammadi, N.; Khoobi, M.; Ma'mani, L.; Foroumadi, A.; Shafiee, A. Synthesis of Monospiro-2-Aminoyran Derivatives Catalyzed by Propaneulfonic Acid Modified Magnetic Hydroxyapatite Nanoparticles. HeIv. Chim. Acta 2013, 96 (8), 1601–1609. doi: 10.1002/hlca.201200516
  • Maleki, A.; Zand, P.; Mohseni, Z. Fe3O4@PEG-SO3H Rod-Like Morphology Along with the Spherical Nanoparticles: Novel Green Nanocomposite Design, Preparation, Characterization and Catalytic Application. RSC Adv. 2016, 6 (112), 110928–110934. doi: 10.1039/C6RA24029A
  • Maleki, A.; Rahimi, R.; Maleki, S. Efficient Oxidation and Epoxidation Using a Chromium (VI)-Based Magnetic Nanocomposite. Environ. Chem. Lett. 2016, 14 (2), 195–199. doi: 10.1007/s10311-016-0558-2
  • Emdadi, Z.; Maleki, A.; Mohammad, M.; Asim, N.; Azizi, M. Coupled Evaporative and Desiccant Cooling Systems for Tropical Climate. Int. J. Environ. Sci. 2017, 2, 278–282.
  • Azizi, M.; Maleki, A.; Hakimpoor, F. Solvent, Metal and Halogen-Free Synthesis of Sulfoxides by Using a Recoverable Heterogeneous Urea-Hydrogen Peroxide Silica-Based Oxidative Catalytic System. Catal. Commun. 2017, 100 (62), 62–65. doi: 10.1016/j.catcom.2017.06.014
  • Benzekri, Z.; Serrar, H.; Boukhris, S.; Sallek, B.; Souizi, A. Snail Shell as a New Natural and Reusable Catalyst for Synthesis of 4H-Pyrans Derivatives. Curr. Chem. Lett. 2016, 5 (3), 99–108. doi: 10.5267/j.ccl.2016.4.001
  • Khurana, J.M.; Chaudhary, A. Efficient and Green Synthesis of 4 H-Pyrans and 4 H-Pyrano [2, 3-c] Pyrazoles Catalyzed by Task-Specific Ionic Liquid [Bmim] OH Under Solvent-Free Conditions. Green Chem. Lett. Rev. 2012, 5 (4), 633–638. doi: 10.1080/17518253.2012.691183
  • Safaei-Ghomi, J.; Shahbazi-Alavi, H.; Teymuri, R. Nano ZrP2O7 Catalyzed Multicomponent Reaction for an Easy Access of 4H-Pyrans and 1,4-Dihydropyridines. Polycyclic Aromat. Compd. 2016, 00, 1–14. doi: 10.1080/10406638.2016.1207688
  • Pandharpatte, M.S.; Mulani, K.B.; Mohammed, N.N.G. Microwave Promoted, Sodium Acetate Catalyzed One Pot Synthesis of Poly Functionalized 4H-Pyrans. J. Chin. Chem. Soc. 2012, 59 (5), 645–649. doi: 10.1002/jccs.201100304
  • Wang, X.S.; Zeng, Z.S.; Zhang, M.M.; Li, Y.L.; Shi, D.Q.; Tu, S.J.; Wei, X.Y.; Zong, Z.M. A Convenient and Clean Procedure for the Synthesis of Pyran Derivatives in Aqueous Media Catalysed by TEBAC. J. Chem. Res. 2006, 4, 228–230. doi: 10.3184/030823406776894256