2,218
Views
9
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Tea polyphenol-assisted green synthesis of Ag-nanodiamond hybrid and its catalytic activity towards 4-nitrophenol reduction

, , , , &
Pages 197-207 | Received 13 Dec 2018, Accepted 24 May 2019, Published online: 03 Jun 2019

References

  • Abbas Khakiani, B.; Pourshamsian, K.; Veisi, H. A Highly Stable and Efficient Magnetically Recoverable and Reusable Pd Nanocatalyst in Aqueous Media Heterogeneously Catalysed Suzuki C-C Cross-Coupling Reactions. Appl. Organomet. Chem. 2015, 29 (5), 259–265. doi:10.1002/aoc.3282.
  • Liao, G.; Li, Q.; Zhao, W.; Pang, Q.; Gao, H.; Xu, Z. In-Situ Construction of Novel Silver Nanoparticle Decorated Polymeric Spheres as Highly Active and Stable Catalysts for Reduction of Methylene Blue Dye. Appl. Catal. A Gen. 2018, 549, 102–111. doi:10.1016/j.apcata.2017.09.034.
  • Veisi, H.; Razeghi, S.; Mohammadi, P.; Hemmati, S. Silver Nanoparticles Decorated on Thiol-Modified Magnetite Nanoparticles (Fe3O4/SiO2-Pr-S-Ag) as a Recyclable Nanocatalyst for Degradation of Organic Dyes. Mater. Sci. Eng. C. 2019, 97 (Dec 2018), 624–631. doi:10.1016/j.msec.2018.12.076.
  • Xue, W.; Huang, D.; Zeng, G.; Wan, J.; Zhang, C.; Xu, R.; Cheng, M.; Deng, R. Nanoscale Zero-Valent Iron Coated with Rhamnolipid as an Effective Stabilizer for Immobilization of Cd and Pb in River Sediments. J. Hazard. Mater. 2018, 341, 381–389. doi:10.1016/j.jhazmat.2017.06.028.
  • Yang, H.; Bradley, S.J.; Wu, X.; Chan, A.; Waterhouse, G.I.N.; Nann, T.; Zhang, J.; Kruger, P.E.; Ma, S.; Telfer, S.G. General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles. ACS Nano. 2018, 12 (5), 4594–4604. doi:10.1021/acsnano.8b01022.
  • Sudarsanam, P.; Zhong, R.; Van den Bosch, S.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised Heterogeneous Catalysts for Sustainable Biomass Valorisation. Chem. Soc. Rev. 2018. doi:10.1039/C8CS00410B.
  • Meirer, F.; Weckhuysen, B.M. Spatial and Temporal Exploration of Heterogeneous Catalysts with Synchrotron Radiation. Nat. Rev. Mater. 2018, 3 (9), 324–340. doi:10.1038/s41578-018-0044-5.
  • Veisi, H.; Hamelian, M.; Hemmati, S. Palladium Anchored to SBA-15 Functionalized with Melamine-Pyridine Groups as a Novel and Efficient Heterogeneous Nanocatalyst for Suzuki–Miyaura Coupling Reactions. J. Mol. Catal. A Chem. 2014, 395, 25–33. doi:10.1016/j.molcata.2014.07.030.
  • Liao, G.; Zhao, W.; Li, Q.; Pang, Q.; Xu, Z. Novel Poly(Acrylic Acid)-Modified Tourmaline/Silver Composites for Adsorption Removal of Cu(II) Ions and Catalytic Reduction of Methylene Blue in Water. Chem. Lett. 2017, 46 (11), 1631–1634. doi:10.1246/cl.170785.
  • Veisi, H.; Najafi, S.; Hemmati, S. Pd(II)/Pd(0) Anchored to Magnetic Nanoparticles (Fe3O4) Modified with Biguanidine-Chitosan Polymer as a Novel Nanocatalyst for Suzuki-Miyaura Coupling Reactions. Int. J. Biol. Macromol. 2018, 113 (Ii), 186–194. doi:10.1016/j.ijbiomac.2018.02.120.
  • Yazdankhah, M.; Veisi, H.; Hemmati, S. In Situ Immobilized Palladium Nanoparticles (Pd NPs) on Fritillaria Imperialis Flower Extract-Modified Graphene and Their Catalytic Activity for Reduction of 4-Nitrophenol. J. Taiwan Inst. Chem. Eng. 2018, 91, 38–46. doi:10.1016/j.jtice.2018.05.043.
  • Liao, G.; Gong, Y.; Yi, C.; Xu, Z. Soluble, Antibaterial, and Anticorrosion Studies of Sulfonated Polystyrene/Polyaniline/Silver Nanocomposites Prepared with the Sulfonated Polystyrene Template. Chinese J. Chem. 2017, 35 (7), 1157–1164. doi:10.1002/cjoc.201600816.
  • Liu, J.; Plog, A.; Groszewicz, P.; Zhao, L.; Xu, Y.; Breitzke, H.; Stark, A.; Hoffmann, R.; Gutmann, T.; Zhang, K.; Buntkowsky, G. Design of a Heterogeneous Catalyst Based on Cellulose Nanocrystals for Cyclopropanation: Synthesis and Solid-State NMR Characterization. Chem. - A Eur. J. 2015, 21 (35), 12414–12420. doi:10.1002/chem.201501151.
  • Eisa, W.H.; Abdelgawad, A.M.; Rojas, O.J. Solid-State Synthesis of Metal Nanoparticles Supported on Cellulose Nanocrystals and their Catalytic Activity. ACS Sustain. Chem. Eng. 2018, 6 (3), 3974–3983. doi:10.1021/acssuschemeng.7b04333.
  • Veisi, H.; Kazemi, S.; Mohammadi, P.; Safarimehr, P.; Hemmati, S. Catalytic Reduction of 4-Nitrophenol Over Ag Nanoparticles Immobilized on Stachys Lavandulifolia Extract-Modified Multi Walled Carbon Nanotubes. Polyhedron. 2019, 157, 232–240. doi:10.1016/j.poly.2018.10.014.
  • Pérez-Mayoral, E.; Calvino-Casilda, V.; Soriano, E. Metal-Supported Carbon-Based Materials: Opportunities and Challenges in the Synthesis of Valuable Products. Catal. Sci. Technol. 2016, 6 (5), 1265–1291. doi:10.1039/c5cy01437a.
  • Chen, T.; Xiong, Y.; Qin, Y.; Yang, H.; Zhang, P.; Ye, F. Facile Synthesis of Low-Cost Biomass-Based γ-Fe2O3/C for Efficient Adsorption and Catalytic Degradation of Methylene Blue in Aqueous Solution. RSC Adv. 2017, 7 (1), 336–343. doi:10.1039/c6ra24900k.
  • Deng, D.; Novoselov, K.S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with Two-Dimensional Materials and Their Heterostructures. Nat. Nanotechnol. 2016, 11 (3), 218–230. doi:10.1038/nnano.2015.340.
  • Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-Warthan, A.A.; Tremel, W. Graphene Based Metal and Metal Oxide Nanocomposites: Synthesis, Properties and Their Applications. J. Mater. Chem. A. 2015, 3 (37), 18753–18808. doi:10.1039/c5ta02240a.
  • Nanda, J.; Biswas, A.; Adhikari, B.; Banerjee, A. A Gel-Based Trihybrid System Containing Nanofibers, Nanosheets, and Nanoparticles: Modulation of the Rheological Property and Catalysis. Angew. Chemie - Int. Ed. 2013, 52 (19), 5041–5045. doi:10.1002/anie.201301128.
  • Huang, H.; Wang, X. Recent Progress on Carbon-Based Support Materials for Electrocatalysts of Direct Methanol Fuel Cells. J. Mater. Chem. A. 2014, 2 (18), 6266–6291. doi:10.1039/c3ta14754a.
  • Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon Nanotube Catalysts: Recent Advances in Synthesis, Characterization and Applications. Chem. Soc. Rev. 2015, 44 (10), 3295–3346. doi:10.1039/c4cs00492b.
  • Mao, H.; Shen, Y.; Zhang, Q.; Ulaganathan, M.; Zhao, S.; Yang, Y.; Hng, H.H. Highly Active and Stable Heterogeneous Catalysts Based on the Entrapment of Noble Metal Nanoparticles in 3D Ordered Porous Carbon. Carbon N. Y. 2016, 96 (32), 75–82. doi:10.1016/j.carbon.2015.09.057.
  • Navalon, S.; Martin, R.; Alvaro, M.; Garcia, H. Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem. 2011, 4 (5), 650–657. doi:10.1002/cssc.201000453.
  • Navalon, S.; de Miguel, M.; Martin, R.; Alvaro, M.; Garcia, H. Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light. J. Am. Chem. Soc. 2011, 133 (7), 2218–2226. doi:10.1021/ja108816p.
  • Manickam-Periyaraman, P.; Espinosa, S.M.; Espinosa, J.C.; Navalón, S.; Subramanian, S.; Álvaro, M.; García, H. Dyes Decolorization Using Silver Nanoparticles Supported on Nanometric Diamond as Highly Efficient Photocatalyst Under Natural Sunlight Irradiation. J. Environ. Chem. Eng. 2016, 4 (4), 4485–4493. doi:10.1016/j.jece.2016.10.011.
  • Ismaili, H.; Workentin, M.S. Covalent Diamond-Gold Nanojewel Hybrids via Photochemically Generated Carbenes. Chem. Commun. (Camb). 2011, 47 (27), 7788–7790. doi:10.1039/c1cc12125a.
  • Krueger, A.; Lang, D. Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 2012, 22 (5), 890–906. doi:10.1002/adfm.201102670.
  • Meinhardt, T.; Lang, D.; Dill, H.; Krueger, A. Pushing the Functionality of Diamond Nanoparticles to New Horizons: Orthogonally Functionalized Nanodiamond Using Click Chemistry. Adv. Funct. Mater. 2011, 21 (3), 494–500. doi:10.1002/adfm.201001219.
  • Dördelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. CuAAC Click Functionalization of Azide-Modified Nanodiamond with a Photoactivatable CO-Releasing Molecule (PhotoCORM) Based on [Mn(CO)3(Tpm)]+. Chem. Commun. (Camb). 2012, 48 (94), 11528–11530. doi:10.1039/c2cc36491c.
  • Veisi, H.; Nasrabadi, N.H.; Mohammadi, P. Biosynthesis of Palladium Nanoparticles as a Heterogeneous and Reusable Nanocatalyst for Reduction of Nitroarenes and Suzuki Coupling Reactions. Appl. Organomet. Chem. 2016, 30 (11), 890–896. doi:10.1002/aoc.3517.
  • Veisi, H.; Safarimehr, P.; Hemmati, S. Oxo-Vanadium Immobilized on Polydopamine Coated-Magnetic Nanoparticles (Fe3O4): A Heterogeneous Nanocatalyst for Selective Oxidation of Sulfides and Benzylic Alcohols with H 2 O 2. J. Taiwan Inst. Chem. Eng. 2018, 88, 8–17. doi:10.1016/j.jtice.2018.03.051.
  • Taheri, S.; Veisi, H.; Hekmati, M. Application of Polydopamine Sulfamic Acid-Functionalized Magnetic Fe3O4 Nanoparticles (Fe3O4 @PDA-SO 3 H) as a Heterogeneous and Recyclable Nanocatalyst for the Formylation of Alcohols and Amines Under Solvent-Free Conditions. New J. Chem. 2017, 41 (12), 5075–5081. doi:10.1039/C7NJ00417F.
  • Farzad, E.; Veisi, H. Fe3O4/SiO2 Nanoparticles Coated with Polydopamine as a Novel Magnetite Reductant and Stabilizer Sorbent for Palladium Ions: Synthetic Application of Fe3O4 /SiO2 @PDA/Pd for Reduction of 4-Nitrophenol and Suzuki Reactions. J. Ind. Eng. Chem. 2018, 60, 114–124. doi:10.1016/j.jiec.2017.10.017.
  • Veisi, H.; Ghorbani, M.; Hemmati, S. Sonochemical in Situ Immobilization of Pd Nanoparticles on Green Tea Extract Coated Fe3O4 Nanoparticles: An Efficient and Magnetically Recyclable Nanocatalyst for Synthesis of Biphenyl Compounds Under Ultrasound Irradiations. Mater. Sci. Eng. C. 2019, 98, 584–593. doi:10.1016/j.msec.2019.01.009.
  • Veisi, H.; Pirhayati, M.; Kakanejadifard, A.; Mohammadi, P.; Abdi, M.R.; Gholami, J.; Hemmati, S. In Situ Green Synthesis of Pd Nanoparticles on Tannic Acid-Modified Magnetite Nanoparticles as a Green Reductant and Stabilizer Agent: Its Application as a Recyclable Nanocatalyst (Fe3O4 @TA/Pd) for Reduction of 4-Nitrophenol and Suzuki Reactions. ChemistrySelect. 2018, 3 (6), 1820–1826. doi:10.1002/slct.201702869.
  • Shahriary, M.; Veisi, H.; Hekmati, M.; Hemmati, S. In Situ Green Synthesis of Ag Nanoparticles on Herbal Tea Extract (Stachys Lavandulifolia)-Modified Magnetic Iron Oxide Nanoparticles as Antibacterial Agent and Their 4-Nitrophenol Catalytic Reduction Activity. Mater. Sci. Eng. C. 2018, 90, 57–66. doi:10.1016/j.msec.2018.04.044.
  • Das, S.; Chakraborty, J.; Chatterjee, S.; Kumar, H. Prospects of Biosynthesized Nanomaterials for the Remediation of Organic and Inorganic Environmental Contaminants. Environ. Sci. Nano. 2018, 180 (1–3), 98–105. doi:10.1039/C8EN00799C.
  • Ismail, M.; Khan, M.I.; Bahadar, S.; Akhtar, K.; Ali, M.; Asiri, A.M. Catalytic Reduction of Picric Acid, Nitrophenols and Organic Azo Dyes via Green Synthesized Plant Supported Ag Nanoparticles. J. Mol. Liq. 2018, 268, 87–101. doi:10.1016/j.molliq.2018.07.030.
  • Chouhan, N.; Ameta, R.; Kumar, R. Biogenic Silver Nanoparticles From Trachyspermum Ammi (Ajwain) Seeds Extract for Catalytic Reduction of p -Nitrophenol to p -Aminophenol in Excess of NaBH 4. J. Mol. Liq. 2017, 230, 74–84. doi:10.1016/j.molliq.2017.01.003.
  • Hemmati, S.; Mehrazin, L.; Ghorban, H.; Garakani, S.H.; Mobaraki, T.H.; Mohammadi, P.; Veisi, H. Green Synthesis of Pd Nanoparticles Supported on Reduced Graphene Oxide, Using the Extract of Rosa Canina Fruit, and Their Use as Recyclable and Heterogeneous Nanocatalysts for the Degradation of Dye Pollutants in Water. RSC Adv. 2018, 8 (37), 21020–21028. doi:10.1039/C8RA03404D.
  • Lebaschi, S.; Hekmati, M.; Veisi, H. Green Synthesis of Palladium Nanoparticles Mediated by Black Tea Leaves (Camellia Sinensis) Extract: Catalytic Activity in the Reduction of 4-Nitrophenol and Suzuki-Miyaura Coupling Reaction Under Ligand-Free Conditions. J. Colloid Interface Sci. 2017, 485, 223–231. doi:10.1016/j.jcis.2016.09.027.
  • Veisi, H.; Ghorbani, F. Iron Oxide Nanoparticles Coated with Green Tea Extract as a Novel Magnetite Reductant and Stabilizer Sorbent for Silver Ions: Synthetic Application of Fe3O4@green Tea/Ag Nanoparticles as Magnetically Separable and Reusable Nanocatalyst for Reduction of 4-. Appl. Organomet. Chem. 2017, 31 (10), e3711. doi:10.1002/aoc.3711.
  • Veisi, H.; Ghadermazi, M.; Naderi, A. Biguanidine-Functionalized Chitosan to Immobilize Palladium Nanoparticles as a Novel, Efficient and Recyclable Heterogeneous Nanocatalyst for Suzuki-Miyaura Coupling Reactions. Appl. Organomet. Chem. 2016, 30 (5), 341–345. doi:10.1002/aoc.3437.
  • Khan, M.; Shaik, M.R.; Adil, S.F.; Khan, S.T.; Al-Warthan, A.; Siddiqui, M.R.H.; Tahir, M.N.; Tremel, W. Plant Extracts as Green Reductants for the Synthesis of Silver Nanoparticles: Lessons from Chemical Synthesis. Dalt. Trans. 2018, 47 (35), 11988–12010. doi:10.1039/C8DT01152D.
  • Fierascu, I.; Georgiev, M.I.; Ortan, A.; Fierascu, R.C.; Avramescu, S.M.; Ionescu, D.; Sutan, A.; Brinzan, A.; Ditu, L.M. Phyto-Mediated Metallic Nano-Architectures via Melissa Officinalis L.: Synthesis, Characterization and Biological Properties. Sci. Rep. 2017, 7 (1), 1–3. doi:10.1038/s41598-017-12804-7.
  • Dauthal, P.; Mukhopadhyay, M. Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications. Ind. Eng. Chem. Res. 2016, 55 (36), 9557–9577. doi:10.1021/acs.iecr.6b00861.
  • Lee, D.W.; Jin, M.H.; Lee, Y.J.; Park, J.H.; Lee, C.B.; Park, J.S. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation. Sci. Rep. 2016, 6 (April), 1–9. doi:10.1038/srep26474.
  • Nakamura, G.; Narimatsu, K.; Niidome, Y.; Nakashima, N. Green Tea Solution Individually Solubilizes Single-Walled Carbon Nanotubes. Chem. Lett. 2007, 36, 1140–1141. doi:10.1246/cl.2007.1140.
  • Wang, Y.; Ho, C.T. Polyphenols Chemistry of Tea and Coffee: A Century of Progress. J. Agric. Food Chem. 2009, 57 (18), 8109–8114. doi:10.1021/jf804025c.
  • Nadagouda, M.N.; Varma, R.S. Green Synthesis of Silver and Palladium Nanoparticles at Room Temperature using Coffee and Tea Extract. Green Chem. 2008, 10 (8), 859. doi:10.1039/b804703k.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13 (10), 2638. doi:10.1039/c1gc15386b.
  • Akhtar, M.S.; Panwar, J.; Yun, Y.-S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013, 1 (6), 591–602. doi:10.1021/sc300118u.
  • Brumbaugh, A.D.; Cohen, K.A.; St. Angelo, S.K. Ultrasmall Copper Nanoparticles Synthesized with a Plant Tea Reducing Agent. ACS Sustain. Chem. Eng. 2014, 2 (8), 1933–1939. doi:10.1021/sc500393t.
  • Nadagouda, M.N.; Iyanna, N.; Lalley, J.; Han, C.; Dionysiou, D.D.; Varma, R.S. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts. ACS Sustain. Chem. Eng. 2014, 2 (7), 1717–1723. doi:10.1021/sc500237k.
  • Chen, Y.; Lee, Y.D.; Vedala, H.; Allen, B.L.; Star, A. Exploring the Chemical Sensitivity of a Carbon Nanotube/Green Tea Composite. ACS Nano. 2010, 4 (11), 6854–6862. doi:10.1021/nn100988t.
  • Wang, Y.; Shi, Z.; Yin, J. Facile Synthesis of Soluble Graphene via a Green Reduction of Graphene Oxide in Tea Solution and Its Biocomposites. ACS Appl. Mater. Interfaces. 2011, 3 (4), 1127–1133. doi:10.1021/am1012613.
  • Wang, Z.; Xu, C.; Gao, G.; Li, X. Facile Synthesis of Well-Dispersed Pd–graphene Nanohybrids and their Catalytic Properties in 4-Nitrophenol Reduction. RSC Adv. 2014, 4 (26), 13644. doi:10.1039/c3ra47721e.
  • Wang, Z.; Xu, C.; Li, X.; Liu, Z. In Situ Green Synthesis of Ag Nanoparticles on Tea Polyphenols-Modified Graphene and Their Catalytic Reduction Activity of 4-Nitrophenol. Colloids Surfaces A Physicochem. Eng. Asp. 2015, 485, 102–110. doi:10.1016/j.colsurfa.2015.09.015.
  • Patterson, A. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982.
  • Zhou, Y.; Yang, J.; He, T.; Shi, H.; Cheng, X.; Lu, Y. Highly Stable and Dispersive Silver Nanoparticle-Graphene Composites by a Simple and Low-Energy-Consuming Approach and Their Antimicrobial Activity. Small. 2013, 9 (20), 3445–3454. doi:10.1002/smll.201202455.
  • Fujishima, A.; Honda, K. Synthesis and Catalytic Application of Nanostructured Silver Dendrites. J. Phys. Chem. C. 2008, 112 (4), 1304–1304. doi:10.1021/jp7116449.
  • Tang, S.; Vongehr, S.; Meng, X. Carbon Spheres with Controllable Silver Nanoparticle Doping. J. Phys. Chem. C. 2010, 114 (2), 977–982. doi:10.1021/jp9102492.
  • Chi, Y.; Yuan, Q.; Li, Y.; Tu, J.; Zhao, L.; Li, N.; Li, X. Synthesis of Fe3O4@SiO2–Ag Magnetic Nanocomposite Based on Small-Sized and Highly Dispersed Silver Nanoparticles for Catalytic Reduction of 4-Nitrophenol. J. Colloid Interface Sci. 2012, 383 (1), 96–102. doi:10.1016/j.jcis.2012.06.027.
  • Wu, W.; Zhang, S.; Li, Y.; Li, J.; Liu, L.; Qin, Y.; Guo, Z.-X.; Dai, L.; Ye, C.; Zhu, D. PVK-Modified Single-Walled Carbon Nanotubes with Effective Photoinduced Electron Transfer. Macromolecules 2003, 36 (17), 6286–6288. doi:10.1021/acs.jpcc.6b09356.
  • Gu, S.; Wunder, S.; Lu, Y.; Ballauff, M.; Fenger, R.; Rademann, K.; Jaquet, B.; Zaccone, A. Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. J. Phys. Chem. C. 2014, 118 (32), 18618–18625. doi:10.1021/jp5060606.
  • Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C. 2010, 114 (19), 8814–8820. doi:10.1021/jp101125j.