1,086
Views
8
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Investigation of cornstalk cellulose liquefaction in supercritical acetone by FT-TR and GC-MS methods

, , , &
Pages 299-309 | Received 14 Mar 2018, Accepted 11 Jul 2019, Published online: 26 Jul 2019

References

  • Song, C.C.; Wang, G.; Hu, H.Q. Progress in Thermochemical Liquefaction of Biomass. Energiae Solaris Sinica 2004, 25 (2), 242–247.
  • Machovina, B.; Feeley, K.J. Restoring Low-Input High-Diversity Grasslands as a Potential Global Resource for Biofuels. Sci. Total Environ. 2017, 609, 205.
  • Simon, D.; Tyner, W.E.; Jacquet, F.; Vermerris, W. Economic Analysis of the Potential of Cellulosic Biomass Available in France From Agricultural Residue and Energy Crops. Bioenerg. Res. 2010, 3 (2), 183–193.
  • Skouta, R. Selective Chemical Reactions in Supercritical Carbon Dioxide, Water, and Ionic Liquids. Green Chem. Lett. Rev. 2009, 2 (3), 121–156.
  • Liu, H.M.; Li, M.F.; Yang, S.; Sun, R.C. Understanding the Mechanism of Cypress Liquefaction in hot-Compressed Water Through Characterization of Solid Residues. Energies 2013, 6 (3), 1590–1603.
  • Li, R.; Xie, Y.; Yang, T.; Li, B.; Zhang, Y.; Kai, X. Characteristics of the Products of Hydrothermal Liquefaction Combined with Cellulosic bio-Ethanol Process. Energy 2016, 114, 862–867.
  • Peng, J.; Chen, P.; Lou, H.; Zheng, X. Catalytic Upgrading of bio-oil by HZSM-5 in sub- and Super-Critical Ethanol. Bioresour. Technol. 2009, 100 (13), 3415–3418.
  • de Caprariis, B.; De Filippis, P.; Petrullo, A. Hydrothermal Liquefaction of Biomass: Influence of Temperature and Biomass Composition on the bio-oil Production. Fuel 2017, 208, 618–625.
  • Yang, T.; Wang, W.; Kai, X.; Li, B.; Sun, Y.; Li, R. Studies of Distribution Characteristics of Inorganic Elements During the Liquefaction Process of Cornstalk. Energy Fuels 2016, 30 (5), 4009–4016.
  • Phusunti, N.; Phetwarotai, W.; Tirapanampai, C.; Tekasakul, S. Subcritical Water Hydrolysis of Microalgal Biomass for Protein and Pyrolytic Bio-oil Recovery. Bioenerg Res. 2017, 10 (4), 1005–1017.
  • Jun, Y.; Eiji, M.; Shiro, S. Liquefaction of Beech Wood in Various Supercritical Alcohols. Wood Sci. 2006, 52 (6), 527–532.
  • Mazaheri, H.; Keatteong, L.; Bhatia, S.; Mohamed, A.R. Sub/Supercritical Liquefaction of oil Palm Fruit Press Fiber for the Production of bio-oil: Effect of Solvents. Bioresour. Technol. 2010, 101 (19), 7641–7647.
  • Tao, H.X.; Xie, X.A.; Zheng, C.Y.; Zhan, X.Q. Liquefaction of Cornstalk Cellulose in sub/Super-Critical Ethanol. J. Northwest Univ. A&F 2014, 42 (1), 196–204.
  • Li, H.; Yuan, X.; Zeng, G.; Huang, D.; Huang, H.; Tong, J.; You, Q.; Zhang, J.; Zhou, M. The Formation of bio-oil From Sludge by Deoxy-Liquefaction in Supercritical Ethanol. Bioresour. Technol. 2010, 101 (8), 2860–2866.
  • Zheng, C.Y.; Xie, X.A.; Tao, H.X.; Zheng, L.S.; Li, Y. Depolymerization of Stalk Cellulose During its Liquefaction in sub-and Supercritical Ethanol. J. Fuel Chem. Technol. 2012, 40 (5), 526–532.
  • Xu, F.; Geng, X.C.; Liu, C.F.; Ren, J.L.; Sun, J.X.; Sun, R.C. Structural Characterization of Residual Lignins Isolated with Cyanamide-Activated Hydrogen Peroxide From Various Organosolvs Pretreated Wheat Straw. J. Appl. Polym. Sci. 2008, 109 (1), 555–564.
  • H.T. Cao. The Research on the Liquefaction of Biomass in Sub-and Supercritical Water. Master’s Thesis, Hunan University, Changsha, China. 2008.
  • Yuan, X.; Cao, H.; Li, H.; Zeng, G.; Tong, J.; Wang, L. Quantitative and Qualitative Analysis of Products Formed During Co-Liquefaction of Biomass and Synthetic Polymer Mixtures in sub- and Supercritical Water. Fuel Process. Technol. 2009, 90 (3), 428–434.
  • Xiao, X.; Bian, J.; Peng, X.P.; Xu, H.; Xiao, B.; Sun, R.C. Autohydrolysis of Bamboo (Dendrocalamus Giganteus Munro) Culm for the Production of Xylooligosaccharides. Bioresour. Technol. 2013, 138, 63–70.
  • X.F. Chen. Analysis of the Products from Alkanolysis of the Rice-Stalk Powder and Related Mechanism Study, Master’s Thesis, Wuhan University of Science and Technology, Wuhan, China, 2008.
  • Li, W.; Xie, X.A.; Tang, C.Z.; Li, Y.; Li, L.; Wang, Y.L.; Wei, X.; Fan, D. Effects of Hydroxyl and Hydrogen Free Radicals on the Liquefaction of Cellulose in sub/Supercritical Ethanol. J. Fuel Chem. Technol. 2016a, 44, 415–421.
  • Chang, S.; Zhao, Z.L.; Zhang, W.; Zheng, A.Q.; Wu, W.Q.; Li, H.B. Comparison of Chemical Composition and Structure of Different Kinds of Bio-Oils. J. Fuel Chem. Technol. 2011, 39 (10), 746–753.
  • Demirbas, A. The Influence of Temperature on the Yields of Compounds Existing in bio-Oils Obtained From Biomass Samples via Pyrolysis. Fuel Process. Technol. 2007, 88 (6), 591–597.
  • Li, W.; Xie, X.; Tang, C.; Li, Y.; Li, L.; Wang, Y.; Fan, D.; Wei, X. The Distribution of bio-oil Components with the Effects of sub/Supercritical Ethanol and Free Radicals During Cellulose Liquefaction. BioResour. 2016, 11 (4), 9771–9778.
  • Zheng, C.Y.; Tao, H.X.; Xie, X.A. Distribution and Characterizations of Liquefaction of Celluloses in sub- and Super-Critical Ethanol. Bioresour. 2013, 8 (1), 648–662.
  • Durak, H.; Aysu, T. Thermochemical Liquefaction of Algae for bio-oil Production in Supercritical Acetone/Ethanol/Isopropanol. J. Supercrit. Fluids 2016, 111, 179–198.
  • Liu, H.-M.; Liu, Y. Effect of Different Solvents on Cypress Liquefaction to Fuels and Characterization of Produces. Bioresour. Technol. 2013, 8 (4), 6211–6219.
  • Shao, Q.J.; Peng, J.X.; Xiu, S.D.; Wen, X.H. Analysis of oil Products by Pyrolysis of Bamboo in Supercritical Methanol. Acta Energ. Sol. Sin. 2007, 28 (9), 984–987.
  • Tao, H.X.; Xie, X.A.; Tang, C.Z.; Tian, W.G. Mechanism of Ketones Formation From Cellulose Liquefaction in sub- and Supercritical Ethanol. J. Fuel Chem. Technol. 2013, 41 (1), 60–66.
  • R, L.M.I.; Barros, B.D. Aggregation of Pseudoisocyanine Iodide in Cellulose Acetate Films: Structural Characterization by FTIR. Langmuir 2000, 16 (24), 9331–9337.
  • Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR Study of Plant Cell Wall Model Compounds: Pectic Polysaccharides and Hemicelluloses. Carbohydr. Polym. 2000, 43 (2), 195–203.
  • Li, M.F.; Sun, S.N.; Xu, F.; Sun, R.C. Formic Acid Based Organosolv Pulping of Bamboo (Phyllostachys Acuta): Comparative Characterization of the Dissolved Lignins with Milled Wood Lignin. Chem. Eng. J. 2012, 179 (4), 80–89.
  • Soares, S.; Ricardo, N.M.P.S.; Jones, S.; Heatley, F. High Temperature Thermal Degradation of Cellulose in air Studied Using Ftir and 1H and 13C Solid-State NMR. Eur. Polym. J. 2011, 37 (4), 737–745.
  • Tang, C.Z.; Tao, H.X.; Zhan, X.Q.; Xie, X.A. Mechanism of Esters Formation During Cellulose Liquefaction in Sub- and Supercritical Ethanol. Bioresour. 2014, 9, 4946–4957.
  • Guo, G.Q.; Wang, H.J.; Chen, F.G. Thermochemical Liquefaction of Lignocellulosic Materious in Hydrogen-Donor Solvent. J. Cellulose Sci. Technol. 2003, 11 (2), 41–50.
  • Mortensen, P.M.; Grunwaldt, J.D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A Review of Catalytic Upgrading of bio-oil to Engine Fuels. Appl. Catal. A-Gen 2011, 407 (1), 1–19.
  • J. B. Huang. Molecular Simulation Study of Pyrolysis Mechanism of Cellulose. Doctor’s Thesis, Chongqing University. Chongqing. China, 2010.
  • Z.F. Geng. Theoretical and Experimental Study on Mechanism of Cellulose Pyrolysis, Doctor’s Thesis. Tianjin University, Tianjin, China, 2010.