5,524
Views
12
CrossRef citations to date
0
Altmetric
RESEARCH LETTERS

Mechanistic considerations and characterization of ammonia-based catalytic active intermediates of the green Knoevenagel reaction of various benzaldehydesFootnote*

ORCID Icon, , , , &
Pages 323-331 | Received 29 Apr 2019, Accepted 11 Jul 2019, Published online: 26 Jul 2019

References

  • Jacobsen, E.N.; Finney, N.S. Synthetic and Biological Catalysts in Chemical Synthesis: how to Assess Practical Utility. Chem. Biol. 1994, 1, 85–90.
  • Heveling, J. Heterogeneous Catalytic Chemistry by Example of Industrial Applications. J. Chem. Educ. 2012, 89, 1530–1536.
  • Wang, Q.; Guo, J.; Chen, P. Recent Progress Towards Mild-Condition Ammonia Synthesis. J. Energy Chem. 2019, 36, 25–36.
  • Vu, M.; Sakar, M.; Do, T. Insights Into the Recent Progress and Advanced Materials for Photocatalytic Nitrogen Fixation for Ammonia (NH3) Production. Catalysts. 2018, 8, 621.
  • Mandal, S.; Mandal, S.; Ghosh, S.K.; Ghosh, A.; Saha, R.; Banerjee, S.; Saha, B. Review of the Aldol Reaction. Synth. Commun. 2016, 46, 1327–1342.
  • Knoevenagel, E. Condensation von Malonsäure mit Aromatischen Aldehyden Durch Ammoniak und Amine. Ber. Dtsch. Chem. Ges. 1898, 31, 2596–2619.
  • Knoevenagel, E. Condensationen zwischen Malonester und Aldehyden unter dem Einfluss von Ammoniak und organischen Aminen. Ber. Dtsch. Chem. Ges. 1898, 31, 2585–2595.
  • Davey, R.M.; Stamford, N.P.J. Catalytic Enamines from Dialkylamide-Dialkylacetals. Tetrahedron Lett. 2012, 53, 2537–2539.
  • List, B. Emil Knoevenagel and the Roots of Aminocatalysis. Angewandte Chemie (International ed. in English) 2010, 49, 1730–1734.
  • Wan, J.; Jing, Y.; Liu, Y.; Sheng, S. Metal-free Synthesis of Cyano Acrylates via Cyanuric Chloride-Mediated Three-Component Reactions Involving a Cascade Consists of Knoevenagel Condensation/Cyano Hydration/Esterification. RSC Adv. 2014, 4, 63997–64000.
  • Joharian, M.; Morsali, A.; Azhdari Tehrani, A.; Carlucci, L.; Proserpio, D.M. Water-stable Fluorinated Metal–Organic Frameworks (F-MOFs) with Hydrophobic Properties as Efficient and Highly Active Heterogeneous Catalysts in Aqueous Solution. Green Chem. 2018, 20, 5336–5345.
  • Raj, M.; Singh, V.K. Organocatalytic Reactions in Water. Chem. Commun. 2009, 44, 6687–6703.
  • van Schijndel, J.; Canalle, L.A.; Smid, J.; Meuldijk, J. Conversion of Syringaldehyde to Sinapinic Acid Through Knoevenagel-Doebner Condensation. Open. J. Phys. Chem. 2016, 6, 101–108.
  • Crowell, T.I.; McLeod, R.K. Kinetics of Hydrobenzamide Formation from p-Dimethylaminobenzaldehyde and Ammonia. Role of the Imine. J. Org Chem. 1967, 32, 4030–4033.
  • Crowell, T.I.; Peck, D.W. Kinetic Evidence for a Schiff Base Intermediate in the Knoevenagel Condensation1. J. Am. Chem. Soc. 1953, 75, 1075–1077.
  • Kamal, A.; Ahmad, A.; Qureshi, A.A. Syntheses of Some Substituted Hexamines in Aqueous Medium. Tetrahedron 1963, 19, 869–872.
  • Nishiyama, K.; Saito, M.; Oba, M. Formation of N,N′-Disubstituted Methanediamine Derivatives From Hexamethyldisilazane and Aldehydes via Stepwise Reactions. Bull. Chem. Soc. Jpn. 1988, 61, 609–611.
  • Sim, S.K.; Hunter, D.H. 2,4-Diazapentadienes. I. Prototropy, Cyclization, and Addition-Elimination. Can. J. Chem. 1972, 50, 669–677.
  • Laurent, M.A. Ueber das Hydrobenzamid. Annalen der Pharmacie 1837, 21, 130–134.
  • Rao, V.K.; Reddy, S.S.; Krishna, B.S.; Naidu, K.R.M.; Raju, C.N.; Ghosh, S.K. Synthesis of Schiff’s Bases in Aqueous Medium: A Green Alternative Approach with Effective Mass Yield and High Reaction Rates. Green Chem. Lett. Rev. 2010, 3, 217–223.
  • Djemili, A.; Lakrout, S.; Cheraiet, Z.; Berredjem, M.; Aouf, N. A Simple and Highly Efficient Solvent- and Catalyst-Free Synthesis of Novel N-Sulfamoyl Imines. Green Chem. Lett. Rev. 2015, 8, 48–53.
  • Lokhande, R.; Sonawane, J.; Roy, A.; Ravishankar, L. Solvent-free Reductive Amination of Aromatic Aldehydes Catalyzed by CeCl3·7H2O. Green Chem. Lett. Rev. 2011, 4, 69–72.
  • Zhong, G.; Zhong, Q. Solid–Solid Synthesis, Characterization, Thermal Decomposition and Antibacterial Activities of Zinc(II) and Nickel(II) Complexes of Glycine–Vanillin Schiff Base Ligand. Green Chem. Lett. Rev. 2014, 7, 236–242.
  • Gupta, K.C.; Sutar, A.K. Catalytic Activities of Schiff Base Transition Metal Complexes. Coord. Chem. Rev. 2008, 252, 1420–1450.
  • van Schijndel, J.; Canalle, L.A.; Molendijk, D.; Meuldijk, J. The Green Knoevenagel Condensation: Solvent-Free Condensation of Benzaldehydes. Green Chem. Lett. Rev. 2017, 10, 404–411.
  • Corey, E.J.; Kühnle, F.N.M. A Simplified Synthesis of (±)-1,2-Diphenyl-1,2-Diaminoethane (1) from Benzaldehyde and Ammonia. Revision of the Structures of the Long-Known Intermediates “Hydrobenzamide” and “Amarine”. Tetrahedron Lett. 1997, 38, 8631–8634.
  • Francis, F. Notiz über die Einwirkung von Ammoniak auf Benzaldehyd und die Darstellung von Benzaldehyd-Ammoniak. Ber. Dtsch. Chem. Ges. 1909, 42, 2216–2218.
  • Doebner, O. Synthese der Sorbinsäure. Ber. Dtsch. Chem. Ges. 1900, 33, 2140–2142.
  • van Schijndel, J.; Molendijk, D.; Canalle, L.A.; Rump, E.T.; Meuldijk, J. Temperature Dependent Green Synthesis of 3-Carboxycoumarins and 3,4-Unsubstituted Coumarins. Curr. Org. Synth. 2019, 16, 130–135.
  • Borah, A.J.; Yan, G. Decarboxylative Functionalization of Cinnamic Acids. Org. Biomol. Chem. 2015, 13, 8094–8115.
  • Patra, T.; Maiti, D. Decarboxylation as the Key Step in C−C Bond-Forming Reactions. Chem. Eur. J. 2017, 23, 7382–7401.
  • Oliveri, I.P.; Maccarrone, G.; Di Bella, S. A Lewis Basicity Scale in Dichloromethane for Amines and Common Nonprotogenic Solvents Using a Zinc(II) Schiff-Base Complex as Reference Lewis Acid. J. Org. Chem. 2011, 76, 8879–8884.
  • Christian Laurence and Jean-François Gal Lewis Basicity and Affinity Scales: Data and Measurement; John Wiley & Sons Ltd: Chichester, U.K., 2010, pp 476.
  • Tiwari, A.; Hihara, L.H. Thermal Stability and Thermokinetics Studies on Silicone Ceramer Coatings: Part 1-Inert Atmosphere Parameters. Polym. Degrad. Stab. 2009, 94, 1754–1771.