1,466
Views
2
CrossRef citations to date
0
Altmetric
LETTER

FeNP-loaded coal-bearing kaolin catalysts for the direct esterification of benzoic acid with cyclic ether via C(sp3)-H bond activation

, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 565-577 | Received 08 Jun 2021, Accepted 07 Sep 2021, Published online: 21 Sep 2021

References

  • Huang, Z.; Lumb, J.P. Phenol-Directed C–H Functionalization. ACS. Catal 2019, 9, 521–555. (b) Shalit, H.; Dyadyuk, A.; Pappo, D. Selective Oxidative Phenol Coupling by Iron Catalysis. J. Org. Chem. 2019, 84, 1677−1686. (c) Chu, XQ.; Ge, D.; Shen, ZL.; Loh, TP. Recent Advances in Radical-Initiated C(sp3)–H Bond Oxidative Functionalization of Alkyl Nitriles. ACS. Catal. 2018, 8, 258−271. (d) Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed C–H Bond Activation. Chem. Rev. 2017, 117, 9086−9139. (e) Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in Inert C–H Bond Functionalization. Chem. Rev. 2017, 117, 9433−9520. (f) Cera, G.; Ackermann, L. Iron-Catalyzed C–H Functionalization Processes. Top. Curr. Chem. 2016, 374, 57. (g) Girard, SA.; Knauber, T.; Li, C. The Cross-Dehydrogenative Coupling of C -H Bonds: A Versatile Strategy for C-C Bond Formations. Angew. Chem. Int. Ed. 2014, 53, 74- 100. (h) Scheuermann, C. Beyond Traditional Cross Couplings: The Scope of the Cross Dehydrogenative Coupling Reaction. J. Chem-Asian. 2010, 5, 436- 451. (i) Yeung, CS.; Dong, VM. Catalytic Dehydrogenative Cross-Coupling: Forming Carbon−Carbon Bonds by Oxidizing Two Carbon−Hydrogen Bonds. Chem. Rev. 2011, 111, 1215-1292. (j) Krylov, IB.; Vil, VA.; Terent'ev, AO. Cross-dehydrogenative coupling for the intermolecular C–O bond formation. Beilstein. J. Org. Chem. 2015, 11, 92- 146. (k) Li, C-J. Cross-Dehydrogenative Coupling (CDC): Exploring C−C Bond Formations beyond Functional Group Transformations. A Acc. Chem. Res. 2009, 42, 335- 344. (l) Sun, CL.; Li, BJ.; Shi, Z. Direct C−H Transformation via Iron Catalysis. Chem. Rev. 2011, 111, 1293-1314. (m) Sun, C-L.; Li, B-J.; Shi, Z-J. Direct C−H Transformation via Iron Catalysis. Chem. Rev. 2011, 111, 1293–1314. (n) Jia, F.; Li, Z-P. Iron-catalyzed/mediated oxidative transformation of C–H bonds. Org. Chem. Front. 2014, 1, 194–214.
  • Wu, Y.N.; Wang, J.; Mao, F.; Kwong, F.Y. Palladium-Catalyzed Cross-Dehydrogenative Functionalization of C(sp2)-H Bonds. Chem. Asian J 2014, 9, 26–47. (b) Shi, W.; Liu, C.; Lei, A. Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bonds involving organometallic reagents as nucleophiles. Chem. Soc. Rev. 2011, 40, 2761−2776. (c) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Chem. Rev. 2011, 111, 1780−1824.
  • Pla, D.; Gomez, M. Metal and Metal Oxide Nanoparticles: A Lever for C−H Functionalization. ACS Catal. 2016, 6, 3537–3552.
  • Krylov, I.B.; Vil, V.A.; Terent’ev, A.O. Cross-dehydrogenative Coupling for the Intermolecular C–O Bond Formation. Beilstein. J. Org. Chem 2015, 11, 92–146.
  • Parsharamulu, T.; Vishnuvardhan, R.P.; Likhar, P.R.; Lakshmi, K.M. Dehydrogenative and Decarboxylative C–H Alkynylation of Heteroarenes Catalyzed by Pd(II)–Carbene Complex. Tetrahedron 2015, 71, 1975–1981. (b) Kozhushkov, SI.; Ackermann, L. Ruthenium-catalyzed direct oxidative alkenylation of arenes through twofold C–H bond functionalization. Chem. Sci. 2013, 4, 886-896. (c) Jin, LK.; Wan, L.; Feng, J.; Cai, C. Nickel-Catalyzed Regioselective Cross-Dehydrogenative Coupling of Inactive C(sp3)–H Bonds with Indole Derivatives. Org. Lett. 2015, 17, 4726- 4729. (d) Li, F.; Meng, Z.; Hua, J.; Li, W.; Lou, H.; Liu, L. Indium-catalyzed oxidative cross-dehydrogenative coupling of chromenes with 1,3-dicarbonyls and aryl rings. Org. Biomol. Chem. 2015, 13, 5710-5715. (e) Rosen, BM.; Quasdorf, KW.; Wilson, DA.; Zhang, N.; Resmerita, AM.; Garg, NK.; Percec, V. Nickel-Catalyzed Cross-Couplings Involving Carbon−Oxygen Bonds. Chem. Rev. 2011, 111, 1346–1416.
  • Itazaki, M.; Nakazawa, H. Iron-Catalyzed Cross-Dehydrogenative-Coupling Reactions. Top. Organomet. Chem. 2015, 50, 47–81.
  • Li, Z.; Cao, L.; Li, C.-J. FeCl2-Catalyzed Selective C-C Bond Formation by Oxidative Activation of a Benzylic C-H Bond. Angew. Chem. Int. Ed 2007, 46, 6505–6517.
  • Li, Z.; Yu, R.; Li, H. Iron-Catalyzed C-C Bond Formation by Direct Functionalization of C-H Bonds Adjacent to Heteroatoms. Angew. Chem. Int. Ed 2008, 47, 7497–7500.
  • Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Cross Dehydrogenative Arylation (CDA) of a Benzylic C-H Bond with Arenes by Iron Catalysis. Angew. Chem. Int. Ed 2009, 48, 3817–3820.
  • Volla, C.M.R.; Vogel, P. Chemoselective C−H Bond Activation: Ligand and Solvent Free Iron-Catalyzed Oxidative C−C Cross-Coupling of Tertiary Amines with Terminal Alkynes. Reaction Scope and Mechanism. Org. Lett 2009, 11, 1701–1704.
  • Majji, G.; Rout, S.K.; Rajamanickam, S.; Guin, S.; Patel, B.K. Synthesis of Esters via sp3 C–H Functionalization. Org. Biomol. Chem 2016, 14, 8178–8211.
  • Feng, J.; Liang, S.; Chen, S.Y.; Zhang, J.; Fu, S.S.; Yu, X.Q. A Metal-Free Oxidative Esterification of the Benzyl C-H Bond. Adv. Synth. Catal 2012, 354, 1287–1292.
  • Liu, H.; Shi, G.; Pan, S.; Jiang, Y.; Zhang, Y. Palladium-Catalyzed Benzylation of Carboxylic Acids with Toluene via Benzylic C–H Activation. Org. Lett 2013, 15, 4098–4101.
  • Huang, J.; Li, L.T.; Li, H.Y.; Husan, E.; Wang, P.; Wang, B. Bu4NI-catalyzed Benzylic Acyloxylation of Alkylarenes with Aromatic Aldehydes. Chem. Commun 2012, 48, 10204–10206.
  • Rout, S.K.; Guin, S.; Ghara, K.K.; Banerjee, A.; Patel, B.K. Copper Catalyzed Oxidative Esterification of Aldehydes with Alkylbenzenes via Cross Dehydrogenative Coupling. Org. Lett 2012, 14, 3982–3985.
  • Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Tetrabutylammonium Iodide Catalyzed Synthesis of Allylic Ester with Tert-Butyl Hydroperoxide as an Oxidant. Org. Lett 2012, 14, 3384–3387.
  • Tran, B.L.; Driess, M.; Hartwig, J.F. Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes. J. Am. Chem. Soc 2014, 136, 17292–17301.
  • Wang, C.Y.; Song, R.J.; Wei, W.T.; Fan, J.H.; Li, J.H. Copper-catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes. Chem. Commun 2015, 51, 2361–2363.
  • Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Bu4NI-Catalyzed C-O Bond Formation by Using a Cross-Dehydrogenative Coupling (CDC) Reaction. Chem. – Eur. J 2011, 17, 4085–4089.
  • Talukdar, D.; Borah, S.; Chaudhuri, M.K. Bis(Acetylacetonato)Copper(II) Catalyzed Oxidative Cross-Dehydrogenative Coupling (CDC) for the Synthesis of α-Acyloxy Ethers Through Direct Activation of α-C(sp3)–H Bond of Cyclic Ether. Tetrahedron Lett. 2015, 56, 2555–2558.
  • Zhao, J.; Fang, H.; Zhou, W.; Han, J.; Pan, Y. Iron-Catalyzed Cross-Dehydrogenative Coupling Esterification of Unactive C(sp3)–H Bonds with Carboxylic Acids for the Synthesis of α-Acyloxy Ethers. J. Org. Chem 2014, 79, 3847–3855.
  • Wen, W.H.; Xie, A.N.; Wang, H.H.; Zhang, D.X.; Ali, A.; Ying, X.; Liu, H.Y. Iron Porphyrin-Catalyzed C(SP3) -H Activation for the Formation of C-O Bond via Cross-Dehydrogenative Coupling of Cycloether and Aromatic Acid. Tetrahedron 2017, 73, 7169–7176.
  • Zhang, Y.; Cui, X.J.; Shi, F.; Deng, Y.Q. Nano-Gold Catalysis in Fine Chemical Synthesis. Chem. Rev 2012, 112, 2467–2505. (b) Turner, M.; Golovko, VB.; Vaughan, OPH.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, MS.; Johnson, BFG.; Lambert, RM. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981-983. (c) Hashmi, ASK.; Hutchings, GJ. Gold Catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896-7936. (d) Grirrane, A.; Corma, A.; Carcia, H. Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science 2008, 322, 1661-1664.
  • Hai, Y.; Li, X.; Wu, H.; Zhao, S.; Deligeer, W.; Asuha, S. Modification of Acid-Activated Kaolinite with TiO2 and its use for the Removal of azo Dyes. Appl. Clay Sci 2015, 114, 558–567. (b) Gao, Z.; Li, X.; Wu, H.; Zhao, S.; Deligeer, W.; Asuha S. Magnetic modification of acid-activated kaolin: Synthesis, characterization, and adsorptive properties. Microporous Mesoporous Mater. 2015, 202, 1-7.
  • Yang, P.; Bao, Y.S. Palladium Nanoparticles Supported on Organofunctionalized Kaolin as an Efficient Heterogeneous Catalyst for Directed C–H Functionalization of Arylpyrazoles. RSC. Adv 2017, 7, 53878–53886.
  • Muschin, T.; Duo, X.; Bao, U.; Zulchin, H.; Agula, B. Environmentally Friendly Treatment of Coal-Bearing Kaolin by Polyhydroxy-Iron for Anionic Dye Removal. Chem. Select 2019, 4, 13810–13816.
  • Éva, M.; András, K.; Tamás, K. Influencing Parameters of Direct Homogenization Intercalation of Kaolinite with Urea, Dimethyl Sulfoxide, Formamide, and N-Methylformamide. Appl. Clay Sci 2019, 182, 105287. (b) Éva, M.; János, K.; Erzsébet, H.; Veronika, V. Mechanochemical intercalation of low reactivity kaolinite. Appl. Clay Sci. 2013, 83-84, 24-31. (c) Li, X.; Liu, Q.; Cheng, H.; Zhang, S.; Frost, L. R. Mechanism of kaolinite sheets curling via the intercalation and delamination process. J.Colloid Interface Sci. 2015, 444, 74-80.
  • Hawn, D.D.; DeKoven, B.M. Deconvalution as a Correction for Photoelectron Inelastic Energy Losses in the Core Level XPS Spectra of Iron Oxides. Surf. Interface Anal 1987, 10, 63. (b) Carvert, J. C.; Schweitzer, G. K. Use of X-Ray Photoelectron Spectroscopy to Study Bonding in Cr, Mn, Fe, and Co Compounds. J. Chem. Phys. 1972, 57, 973-982.