11,245
Views
9
CrossRef citations to date
0
Altmetric
REVIEW

Cashew nutshell liquid and its derivatives in oil field applications: an update

, ORCID Icon &
Pages 620-633 | Received 30 Jun 2021, Accepted 05 Oct 2021, Published online: 25 Oct 2021

References

  • Hammed, L.A.; Anikwe, J.C.; Adededji, A.R. Cashew Nuts and Production Development in Nigeria. Am. Eurasian J. Sci. Res. 2008, 3 (1), 54–61.
  • Adeigbe, O.O.; Olasupo, F.O.; Adewale, B.D.; Muyiwa, A.A. A Update on Cashew Research and Production in Nigeria in the Last Four Decades. Sci. Res. Essays 2015, 10 (5), 196–209.
  • Suganya, P.; Dharshini, R. Value Added Products from Cashew Apple-an Alternate Nutritional Source. Int. J. Current Res. 2011, 3, 177–180.
  • Nugawela, P.A.; Oroch, R. Cashew Sub-Sector Strategic Framework. Promoting Sub-Sector Strategic Framework. Promoting Proper Opportunities Through Commodities and Service Markers; Department for International Development (UK): Nigeria, 2005.
  • Braga, F.; Ojeda, M.; Perdomo, R.T.; de Albuquerque, S.; Rafique, J.; de Lima, D.P.; Beatriz, A. Synthesis of Cardanol-based 1,2,3-Triazoles as Potential Green Agents Against Neoplastic Cells. Sustain. Chem. Pharmacy 2021, 20, 100408. doi:https://doi.org/10.1016/j.scp.2021.100408.
  • Topper, C.P.; Caligari, P.D.S.; Camara, M.; Diaora, S.; Djaha, A.; Coulibaly, F., … Adebola, P.O. West Africa Regional Cashew Survey (Covering the Countries Guinea, Guinea Bissau, Cote d’Ivoire, Ghana and Nigeria, 2001.
  • Lubi, M.C.; Thachil, E.T. Cashew Nut Shell Liquid (CNSL)-a Versatile Monomer for Polymer Synthesis. Des. Monomers Polym. 2000, 3 (2), 123–153.
  • Paramashivappa, R.; Kumar, P.P.; Vithayathil, P.J.; Rao, A.S. Novel Method for Isolation of Major Phenolic Constituents from Cashew (Anacardium occidentale L.) Nut Shell Liquid. J. Agric. Food Chem. 2001, 49 (5), 2548–2551.
  • Tyman, J.H.; Bruce, I.E. Synthesis and Characterization of Polyethoxylate Surfactants Derived from Phenolic Lipids. J. Surfactants Deterg. 2003, 6 (4), 291–297.
  • Tyman, J.H.; Bruce, I.E. Surfactant Properties and Biodegradation of Polyethoxylates from Phenolic Lipids. J. Surfactants Deterg. 2004, 7 (2), 169–173.
  • de Avellar, I.G.; Godoy, K.; Magalhães, G.C.D. New Quaternary Ammonium Salts Derived from Cardanol and Their Use as Phase Transfer Catalyst. J. Braz. Chem. Soc. 2000, 11 (1), 22–26.
  • Scorzza, C.; Nieves, J.; Vejar, F.; Bullón, J. Synthesis and Physicochemical Characterization of Anionic Surfactants Derived from Cashew Nut Shell oil. J. Surfactants Deterg. 2010, 13 (1), 27–31.
  • Peungjitton, P.; Sangvanich, P.; Pornpakakul, S.; Petsom, A.; Roengsumran, S. Sodium Cardanol Sulfonate Surfactant from Cashew nut Shell Liquid. J. Surfactants Deterg. 2009, 12 (2), 85–89.
  • Wang, J.; Wang, Y.W.; Li, C.Q.; Li, J. Synthesis and Surface Activity of Biomass Cardanol Sulfonate Surfactant. Adv. Mat. Res. 2011, 183-185, 1534–1538. Trans Tech Publications Ltd.
  • Dai, Z.; Constantinescu, A.; Dalal, A.; Ford, C. Phenalkamine Multipurpose Epoxy Resin Curing Agents. Cardolite Corporation 1994, XX, 1.
  • Greco, A.; Brunetti, D.; Renna, G.; Mele, G.; Maffezzoli, A. Plasticizer for Poly (Vinyl Chloride) from Cardanol as a Renewable Resource Material. Polym. Degrad. Stab. 2010, 95 (11), 2169–2174.
  • Chen, J.; Nie, X.; Liu, Z.; Mi, Z.; Zhou, Y. Synthesis and Application of Polyepoxide Cardanol Glycidyl Ether as Biobased Polyepoxide Reactive Diluent for Epoxy Resin. ACS. Sustain. Chem. Eng. 2015, 3 (6), 1164–1171.
  • Calò, E.; Greco, A.; Maffezzoli, A. Effects of Diffusion of a Naturally-derived Plasticizer from Soft PVC. Polym. Degrad. Stab. 2011, 96 (5), 784–789.
  • Amorati, R.; Pedulli, G.F.; Valgimigli, L.; Attanasi, O.A.; Filippone, P.; Fiorucci, C.; Saladino, R. Absolute Rate Constants for the Reaction of Peroxyl Radicals with Cardanol Derivatives. J. Chem Soc., Perkin Trans. 2001, 2 (11), 2142–2146.
  • Copini, S.; Micheletti, A.C.; De Souza, A.M.; Gomes, R.S.; De Lima, D.P.; Beatriz, A. Synthesis and Antioxidant and Antimicrobial Properties of β-Hydroxy Sulfides, Sulfoxides, and Sulfones Derived from Cardanol and Glycerol Derivatives. J. Braz. Chem. Soc. 2020, 31, 2569–2582.
  • Teerasripreecha, D.; Phuwapraisirisan, P.; Puthong, S.; Kimura, K.; Okuyama, M.; Mori, H.; Chanchao, C. In Vitro Antiproliferative/Cytotoxic Activity on Cancer Cell Lines of a Cardanol and a Cardol Enriched from Thai Apis Mellifera Propolis. BMC Complement. Altern. Med. 2012, 12 (1), 27.
  • Voirin, C.; Caillol, S.; Sadavarte, N.V.; Tawade, B.V.; Boutevin, B.; Wadgaonkar, P.P. Functionalization of Cardanol: Towards Biobased Polymers and Additives. Polym. Chem. 2014, 5 (9), 3142–3162.
  • Victor-Oji, C.O.; Chukwu, U.J.; Akaranta, O. Comparative Study of Cashew nut Shell Liquid and a Commercial Demulsifier for Treating Crude oil Emulsions. Chem. Sci. Int. J. 2019, XX, 1–17.
  • Puchot, L., Cardanol: A Bio-based Building Block for New Sustainable and Functional Materials Doctoral dissertation, Cergy-Pontoise, 2016.
  • Paul, V.J.; Yeddanapalli, L.M. Olefinic Nature of Anacardic Acid from Indian Cashew-nut Shell Liquid. Nature 1954, 174 (4430), 604–604.
  • Symes, W.F.; Dawson, C.R. Separation and Structural Determination of the Olefinic Components of Poison ivy Urushiol, Cardanol and Cardol. Nature 1953, 171 (4358), 841–842.
  • Cornelius, J.A. Some Technical Aspects Influencing the Quality of Palm Kernels. J. Sci. Food Agric. 1966, 17 (2), 57–61.
  • Mazzetto, S.E.; Lomonaco, D.; Mele, G. Óleo da castanha de caju: oportunidades e desafios no contexto do desenvolvimento e sustentabilidade industrial. Química Nova 2009, 32 (3), 732–741.
  • Patel, R.N.; Bandyopadhyay, S.; Ganesh, A. Extraction of Cashew (Anacardium occidentale) nut Shell Liquid Using Supercritical Carbon Dioxide. Bioresour. Technol. 2006, 97 (6), 847–853.
  • Rodrigues, F.H.; França, F.C.; Souza, J.R.; Ricardo, N.M.; Feitosa, J. Comparison Between Physico-Chemical Properties of the Technical Cashew Nut Shell Liquid (CNSL) and Those Natural Extracted from Solvent and Pressing. Polímeros 2011, 21 (2), 156–160.
  • Das, P.; Ganesh, A. Bio-oil from Pyrolysis of Cashew nut Shell—a Near Fuel. Biomass Bioenergy 2003, 25 (1), 113–117.
  • Tsamba, A.J.; Yang, W.; Blasiak, W. Pyrolysis Characteristics and Global Kinetics of Coconut and Cashew nut Shells. Fuel Process. Technol. 2006, 87 (6), 523–530.
  • Taiwo, E.A. Cashew nut Shell oil—a Renewable and Reliable Petrochemical Feedstock. Adv. Petrochem. 2015, 1–25.
  • Shobha, S.V.; Ravindranath, B. Supercritical Carbon Dioxide and Solvent Extraction of the Phenolic Lipids of Cashew nut (Anacardium occidentale) Shells. J. Agric. Food Chem. 1991, 39 (12), 2214–2217.
  • Smith, R.L.; Malaluan, R.M.; Setianto, W.B.; Inomata, H.; Arai, K. Bio Based Manufacture of Alkyl Phenols and Polysaccharides from Cashew nut with Supercritical Carbon Dioxide and Water. Bioresour. Technol. 2003, 88, 1–7.
  • Yuliana, M.; Tran-Thi, N.Y.; Ju, Y.H. Effect of Extraction Methods on Characteristic and Composition of Indonesian Cashew nut Shell Liquid. Ind. Crops Prod. 2012, 35 (1), 230–236.
  • Gandhi, T.S.; Dholakiya, B.Z.; Patel, M.R. Extraction Protocol for Isolation of CNSL by Using Protic and Aprotic Solvents from Cashew nut and Study of Their Physico-Chemical Parameter. Polish J. Chem. Technol. 2013, 15 (4), 24–27.
  • Garkal, D.J.; Bhande, R.S. Update on Extraction and Isolation of Cashew nut Shell Liquid. Int. J. Innovat. Eng. Res. Technol. 2014, 1, 1.
  • Acland, J.D. East African Crops. FAO and Longman 1975, 5, 29–32.
  • Mohod, A.G.; Khandetod, Y.P.; Sengar, S. Eco-friendly Utilization of Parabolic Concentrating Solar Cooker for Extraction of Cashew nut Shell oil and Household Cooking. Int. J. Sustain. Energy 2010, 29 (3), 125–132.
  • Couto, H. S., Duarte, F., & Bastos-Netto, D., Biomass Combustion Chamber for Cashew nut Industry. In Proceedings of the Seventh Asia-Pacific International Symposium on Combustion and Energy Utilization, December 2004.
  • Morais, S.M.; Silva, K.A.; Araujo, H.; Vieira, I.G.; Alves, D.R.; Fontenelle, R.O.; Silva, A. Anacardic Acid Constituents from Cashew nut Shell Liquid: NMR Characterization and the Effect of Unsaturation on its Biological Activities. Pharmaceuticals 2017, 10 (1), 31.
  • Risfaheri, T.T.; Nur, M.A.; Sailah, I. Isolation of Cardanol from Cashew nut Shell Liquid Using the Vacuum Distillation Method. Indonesian J. Agricult. 2009, 2 (1), 11–20.
  • Kumar, P.; Paramashivappa, P.; Vithayathil, R.; Subba Rao, P.J.; V, P.; Srinivasa Rao, A. Process for Isolation of Cardanol from Technical Cashew (Anacardium occidentale L.) nut Shell Liquid. J. Agric. Food Chem. 2002, 50 (16), 4705–4708.
  • Akinhanmi, T.F.; Atasie, V.N.; Akintokun, P.O. Chemical Composition and Physicochemical Properties of Cashew nut (Anacardium occidentale) oil and Cashew nut Shell Liquid. J. Agricult. Food Environ. Sci. 2008, 2 (1), 1–10.
  • Antony, R.; Pillai, C.K.S.; Scariah, K.J. GPC Studies on the Cationic Polymerization of Cardanol Initiated by Boron Trifluoride Diethyletherate. J. Appl. Polym. Sci. 1990, 41 (7-8), 1765–1775.
  • Calò, E.; Maffezzoli, A.; Mele, G.; Martina, F.; Mazzetto, S.E.; Tarzia, A.; Stifani, C. Synthesis of a Novel Cardanol-Based Benzoxazine Monomer and Environmentally Sustainable Production of Polymers and bio-Composites. Green Chem. 2007, 9 (7), 754–759.
  • Odin, G. Principles of Polymerization, 3rd ed.; John Wiley: New York, 1991.
  • Jain, R.K.; Kumar, S. Development of a Cashew nut Sheller. J. Food Eng. 1997, 32 (3), 339–345.
  • Gandhi, T.; Patel, M.; Dholakiya, B.K. Studies on Effect of Various Solvents on Extraction of Cashew nut Shell Liquid (CNSL) and Isolation of Major Phenolic Constituents from Extracted CNSL. Nat. Prod. Plant Resour. 2012, 2, 135–142.
  • Yohana, M.; Ndoile, M.; Mgani, Q. Cost Effective Strategy for the Synthesis of Azo Dyes by Using Cashew nut Shell Liquid (CNSL). Tanzania J. Sci. 2018, 44 (2), 141–153.
  • Attanasi, O.A.; Berretta, S.; Fiani, C.; Filippone, P.; Mele, G.; Saladino, R. Synthesis and Reactions of Nitro Derivatives of Hydrogenated Cardanol. Tetrahedron 2006, 62 (25), 6113–6120.
  • Attanasi, O.A.; Buratti, S.; Filippone, P.A.O.L.I.N.O. Regioselective Bromination of Cardanol Derivatives. Org. Prep. Proced. Int. 1995, 27 (6), 645–650.
  • Bhunia, H.P.; Basak, A.; Chaki, T.K.; Nando, G.B. Synthesis and Characterization of Polymers from Cashew nut Shell Liquid: A Renewable Resource: V. Synthesis of Copolyester. Eur. Polym. J. 2000, 36 (6), 1157–1165.
  • Atta, A.M.; Al-Lohedan, H.A.; Abdullah, M.M.; ElSaeed, S.M. Application of New Amphiphilic Ionic Liquid Based on Ethoxylated Octadecylammonium Tosylate as Demulsifier and Petroleum Crude oil Spill Dispersant. J. Ind. Eng. Chem. 2016, 33, 122–130.
  • Kim, Y.H.; An, E.S.; Park, S.Y.; Song, B.K. Enzymatic Epoxidation and Polymerization of Cardanol Obtained from a Renewable Resource and Curing of Epoxide-Containing Polycardanol. J. Mol. Catal. B: Enzym. 2007, 45 (1-2), 39–44.
  • Suresh, K.I.; Kishanprasad, V.S. Synthesis, Structure, and Properties of Novel Polyols from Cardanol and Developed Polyurethanes. Ind. Eng. Chem. Res. 2005, 44, 4504–4512.
  • Perdriau, S.; Harder, S.; Heeres, H.J.; de Vries, J.G. Selective Conversion of Polyenes to Monoenes by RuCl3-Catalyzed Transfer Hydrogenation: The Case of Cashew Nutshell Liquid. ChemSusChem. 2012, 5 (12), 2427–2434.
  • Sanger, S.H.; Mohod, A.G.; Khandetode, Y.P.; Shrirame, H.Y.; Deshmukh, A.S. Study of Carbonization for Cashew nut Shell. Res. J. Chem. Sci. 2011, 1 (2), 43–55.
  • Velmurugan, V.; Loganathan, M. Effect of Ethanol Addition with Cashew nut Shell Liquid on Engine Combustion and Exhaust Emission in a DI Diesel Engine. Int. J. Eng. Sci Technol. 2012, 4 (7), 3316–3328.
  • Fayomi, M.O.; Ike, D.C.; Iorhemba, M.A.; Ameh, O.M.; Ihegwuagu, N.E.; Kalu, R.C. Investigation on the Corrosion Inhibiting Property of Modified Cashew Nutshell Liquid. Int. J. Corros. Scale Inhibit. 2021, 10 (3), 1307–1322.
  • Lomonaco, D.; Cangane, F.Y.; Mazzetto, S.E. Thiophosphate Esters of Cashew Nutshell Liquid Derivatives as New Antioxidants for Poly (Methyl Methacrylate). J. Therm. Anal. Calorim. 2011, 104 (3), 1177–1183.
  • Philip, J.Y.; Buchweishaija, J.; Mkayula, L.L. Cashew nut Shell Liquid as an Alternative Corrosion Inhibitor for Carbon Steels. Tanzania J. Sci. 2001, 27 (1), 9–19.
  • Vasapollo, G.; Mele, G.; Sole, R.D.; Pio, I.; Li, J.; Mazzetto, S.E. Use of Novel Cardanol-Porphyrin Hybrids and Their TiO2-Based Composites for the Photodegradation of 4-Nitrophenol in Water. Molecules 2011, 16 (7), 5769–5784.
  • da Silva, F.J.A. A Note on the Potential of CNSL in Fuel Blends for Engines in Brazil. Revista Tecnologia 2016, 30 (1), 89–96.
  • Nakpipat, P.; Niiyama, H. Diesel oil from Cashew nut Shell Liquid. Regional Symposium on Chemical Engineering, 1999.
  • Solanki, J.H.; Javiya, T.V. Cashew Nut Shell Liquid Fuel a Substitute for Diesel Fuel to be Used in CI Engine. Int. J. Adv. Res. Sci. Eng. Technol. 2012, 1 (2), 8–12.
  • Vedharaj, S.; Vallinayagam, S.; Yang, W.M.; Saravanan, C.G.; Roberts, W.L. Synthesis and Utilization of Catalytically Cracked Cashew Nutshell Liquid in a Diesel Engine. Exp. Therm. Fluid Sci. 2015.
  • Mallikappa, D.; Reddy, R.P.; Murthy, C.S. Performance and Emission Characteristics of Double Cylinder CI Engine Operated with Cardanol Bio Fuel Blends. Renew. Energy 2012, 38, 150–154.
  • Boot, M.D.; Frijters, P.J.; Klein-Douwel, R.J.; Baert, R.S. Oxygenated Fuel Composition Impact on Heavy-Duty Diesel Engine Emissions; SAE Technical Paper 2007, 25.
  • Boot, M.; Frijters, P.; Luijten, C.; Somers, B.; Baert, R.; Donkerbroek, A. Cyclic Oxygenates: A New Class of Second-Generation Biofuels for Diesel Engines. Energy Fuels 2008, 23, 1808–1817.
  • Vallinayagam, R.; Vedharaj, S.; Yang, W.; Lee, P.; Chua, K.; Chou, S. Combustion Performance and Emission Characteristics Study of Pine oil in a Diesel Engine. Energy 2013, 57, 344–351.
  • Vallinayagam, R.; Vedharaj, S.; Yang, W.; Saravanan, C.; Lee, P.; Chua, K. Impact of Promoting Additives on the Characteristics of a Diesel Engine Powered by Pine oil–Diesel Blend. Fuel 2014, 117, 278–285.
  • Gumus, M.; Sayin, C.; Canakci, M. The Impact of Fuel Injection Pressure on the Exhaust Emissions of a Direct Injection Diesel Engine Fueled with Biodiesel–Diesel Fuel Blends. Fuel 2012, 95, 486–494.
  • He, Z.; Zhong, W.; Wang, Q.; Jiang, Z.; Shao, Z. Effect of Nozzle Geometrical and Dynamic Factors on Cavitating and Turbulent Flow in a Diesel Multi-Hole Injector Nozzle. Int. J. Therm. Sci. 2013, 70, 132–143.
  • Amorin, R.; Dosunmu, A.; Amankwah, R.K. Economic Viability of The Use of Local Pseudo- Oils for Drilling Fluid Formulation. Ghana Mining J. 2015, 15 (2), 81–90.
  • Fitzgerald, B. L., McCourt, A. J. and Brangetto, M., “Drilling Fluid Plays Key Role in Developing the Extreme HTHP, Elgin/Franklin Field”, Proceedings at the 2000 IADC/SPE Drilling Conference, 2000 New Orleans, Louisiana, February 23–25, pp. 1-12.
  • Fakharany, T.E.; Ahamed, A.G.; Hadir, S. “Formulating Environmentally Friendly Oil Based Mud Using Soybeans Oil. IARJSET 2017, 4 (7), 57–61.
  • Dosunmu, A. and Ogunrinde, J. O, “Development of Environmentally Friendly OilBased Mud Using Palm-Oil and Groundnut-Oil”, Proceedings at the Nigeria Annual International Conference and Exhibition, 2010, Tinapa - Calabar, Nigeria, pp. 1-9. July 31, - August 7
  • Amanuallah, M. “Physio-Chemical Characteristic of Vegetable Oils and Preliminary Test Result of Vegetable–Oil Based mud” Presented at the SPE/IADC Midddle East Drilling Technology Conference and Exhibition, Dubia, United Arab Emirates, 2005.
  • Ibrahim, D.S.; Sami, N.A.; Balasubramanian, N. Effect of Barite and gas oil Drilling Fluid Additives on the Reservoir Rock Characteristics. J. Pet. Explor. Prod. Technol. 2017, 7 (1), 281–292.
  • Iranwan, S.; Ahamad, Z.A.A.; Mohd, S. Corn Cobs and Sugar Cane Waste as a Viscosifier in Drilling Fluid. J. Sci. Technol. 2009, 17, 173–181.
  • Okoro, E. E., Dosunmu, A., Oriji, B., Iyuke, S., Impact of Reversible Invert Emulsion Drilling Fluid Rheology on Productivity.SPE-178308-MS, Nigerian Annual Technical Conference and Exhibition, 2015.
  • Dike, H.N.; Dosunmu, A.; Akaranta, O.; Kinigoma, B. Effect of Cashew Nut Shell Liquid Esters on KCL/Polymer/Glycol Drilling Fluid Flow Property.
  • Cheng, C.; Bai, X.; Liu, S.; Huang, Q.; Tu, Y.; Wu, H.; Wang, X. UV Cured Polymer Based on a Renewable Cardanol Derived RAFT Agent. J. Polym. Res. 2013, 20 (7), 197.
  • Sethi, S.C.; Subba Rao, B.C.; Kulkarni, S.H.; Katti, S.S. Anionic Surface Active Agents from Cardanol, Tetrahydrocardanol and Derivatives. Indian J. Technol. 1963, 1, 348–355.
  • Mmongoyo, J.A.; Mgani, Q.A.; Mdachi, S.J.; Pogorzelec, P.J.; Cole-Hamilton, D.J. Synthesis of a Kairomone and Other Chemicals from Cardanol, a Renewable Resource. Eur. J. Lipid Sci. Technol. 2012, 114 (10), 1183–1192.
  • Bruce, I.E.; Mehta, L.; Porter, M.J.; Stein, B.K.; Tyman, J.H. Anionic Surfactants Synthesised from Replenishable Phenolic Lipids. J. Surfactants Deterg. 2009, 12 (4), 337–344.
  • Eke, W. I., Achugasim, O., Ofordile, S. E., Ajienka, J., & Akaranta, O., Performance Evaluation of Cashew Nut Shell Liquid CNSL as Flow Improver for Waxy Crude Oils. SPE Nigeria Annual International Conference and Exhibition, August 2019. Society of Petroleum Engineers.
  • Soni, H.P.; Kiranbala, Agrawal, K.S.; Nagar, A.; Bharambe, D.P. Designing MaleicAnhydride-co-α-Olifin Copolymeric Combs as Wax Crystal Growth Nucleator. Fuel Process.Technol. 2010, 91, 997–1004.
  • Machado, A.L.C.; Lucas, E.F. “Poly(Ethylene-co-Vinyl Acetate) (EVA) Copolymers AsModifiers of Oil Wax Crystallization. Petrol. Sci. Technol. 1999, 17 (9&10), 1029–1041.
  • Kazantsev, O.A.; Volkova, G.I.; Prozorova, I.V.; Orekhov, D.V.; Samodurova, S.I.; Kamorin, D.M.; Moikin, A.A.; Medzhibovskii, A.S. Poly (Alkyl (Meth) Acrylate) “Depressants ForParaffin Oils. Pet. Chem. 2016, 56 (1), 68–72.
  • Al-Sabagh, A.M.; Noor El-Din, M.R.; Morsi, R.E.; Elsabee, M.Z. Styrene-maleic Anhydride Co-Polymer Esters as Flow Improvers of Waxy Crude Oil. J. Petrol. Sci. Eng. 2009, 65, 139–146.
  • Huyen, Q.T.M.; Khanh, N.V. Synthesis of Crude oil Pour Point Depressants via Polycondensation of Cashew nut Shell Liquids. Petrovietnam J. 2014, 6, 48–52.
  • Ramanujam, S. Paint India 1961, 11 (1), 47–112.
  • Chopra, S.S.; Sankaranarayanan, Y. Correlation of Quality of Lac (Especially Colour) with the Climatic Conditions of the Growing Region. Indian Forester 1966, 92 (3), 191–195.
  • Sailan, W. Water-Soluble Cashew Nut Shell Oil–Aldehyde Resln Paints. Paint & Coatings Ind. 1995, 6, 06.
  • Selvaraj, M.; Guruviah S. Performance of CNSL Pigmented Resins Electropainted on Mild Steel Substrates. Paintindia 1987, 37 (7), 19–22.
  • Sharma, S.S.; Nair, A.; Pai, K.V. Cashew Nut Shell Liquid (CNSL): Conversion to Commercially Useful Product. In Recycling and Reuse of Materials and Their Products; Apple Academic Press: 2013; pp 133-146.
  • Selvaraj, M.; Guruviah S. Lead Silico Chromate Paint Based on Cashew nut Shell Liquid Resin. Paintindia 1987, 37 (8), 27–29.
  • Ramalingam, T.; Murthy, B.G.K.; SivaSamban, M.A.; Aggarwal, J.S. Cashewnut Shell Liquid Distillation Residue-Its Utilion in Coatings, 1970.
  • Zafar, F.; Ghosal, A.; Ghosal, A.; Sharmin, E.; Nishat, N. Cashew Nut Shell Liquid (Phenolic Lipid) Based Coatings: Polymers to Nanocomposites. Integrat. Green Chem. Sustain. Eng. 2019, 255–289.
  • Murthy, B.G.K.; Sivasamban, M.A. Recent Trends in CNSL Utilization. In International Cashew Symposium. March1979, 108, pp 200–206.
  • Patil, D.M.; Phalak, G.A.; Mhaske, S.T. Enhancement of Anti-Corrosive Performances of Cardanol Based Amine Functional Benzoxazine Resin by Copolymerizing with Epoxy Resins. Prog. Org. Coat. 2017, 105, 18–28.
  • Bhaumik, S.; Kamaraj, M.; Paleu, V. Tribological Analyses of a New Optimized Gearbox Biodegradable Lubricant Blended with Reduced Graphene Oxide Nanoparticles. J Eng. Tribol. 2020, 1–15.
  • Bhaumika, S.; Paleub, V.; Pathakc, R.; Maggirwara, R.; Katiyara, J.K.; Sharmad, A.K. Tribological Investigation of r-GO Additived Biodegradable Cashew nut Shells Liquid as an Alternative Industry Lubricant. Tribol. Int. 2019, 135, 500–509.