2,068
Views
8
CrossRef citations to date
0
Altmetric
Research Article

[3 + 2] Cycloaddition reactions of nitrile oxides generated in situ from aldoximes with alkenes and alkynes under ball-milling conditions

, , &
Pages 519-528 | Received 02 May 2022, Accepted 22 Jul 2022, Published online: 01 Aug 2022

References

  • Stolle, A.; Szuppa, T.; Leonhardt, S.E.S.; Ondruschka, B. Ball Milling in Organic Synthesis: Solutions and Challenges. Chem. Soc. Rev. 2011, 40, 2317–2329.
  • James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447.
  • Friščić, T. Supramolecular Concepts and New Techniques in Mechanochemistry: Cocrystals, Cages, Rotaxanes, Open Metal–Organic Frameworks. Chem. Soc. Rev. 2012, 41, 3493–3510.
  • Zhu, S.-E.; Li, F.; Wang, G.-W. Mechanochemistry of Fullerenes and Related Materials. Chem. Soc. Rev. 2013, 42, 7535–7570.
  • Wang, G.-W. Mechanochemical Organic Synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700.
  • Hernández, J.G.; Bolm, C. Altering Product Selectivity by Mechanochemistry. J. Org. Chem. 2017, 82, 4007–4019.
  • Bolm, C.; Hernándezm, J.G. Mechanochemistry of Gaseous Reactants. Angew. Chem. Int. Ed. 2019, 58, 3285–3299.
  • Wang, N.-N.; Wang, G.-W. Investigation Into Condensed-Matter Organic Synthesis Under Mechanical Milling Conditions. Prog. Chem. 2020, 32, 1076–1085.
  • Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M. Synthesis and X-Ray Structure of Dumb-Bell-Shaped C120. Nature 1997, 387, 583–586.
  • Wang, G.-W. Fullerene Mechanochemistry: Serendipitous Discovery of Dumb-Bell-Shaped C120 and Beyond. Chin. J. Chem. 2021, 39, 1797–1803.
  • Su, Y.-T.; Wang, G.-W. FeCl3-Mediated Cyclization of [60] Fullerene with N-Benzhydryl Sulfonamides Under High-Speed Vibration Milling Conditions. Org. Lett. 2013, 15, 3408–3411.
  • Zhao, Y.; Rocha, S.V.; Swager, T.M. Mechanochemical Synthesis of Extended Iptycenes. J. Am. Chem. Soc. 2016, 138, 13834–13837.
  • Turberg, M.; Ardila-Fierro, K.J.; Bolm, C.; Hernández, J.G. Altering Copper-Catalyzed A3 Couplings by Mechanochemistry: One-Pot Synthesis of 1,4-Diamino-2-Butynes from Aldehydes, Amines, and Calcium Carbide. Angew. Chem. Int. Ed. 2018, 57, 10718–10722.
  • Seo, T.; Ishiyama, T.; Kubota, K.; Ito, H. Solid-State Suzuki–Miyaura Cross-Coupling Reactions: Olefin-Accelerated C–C Coupling Using Mechanochemistry. Chem. Sci. 2019, 10, 8202–8210.
  • Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox Reactions of Small Organic Molecules Using Ball Milling and Piezoelectric Materials. Science 2019, 366, 1500–1504.
  • Li, L.; Wang, G.-W. Mechanochemical Solvent-Free Synthesis of Indenones from Aromatic Carboxylic Acids and Alkynes. J. Org. Chem. 2021, 86, 14102–14112.
  • Ni, S.; Hribersek, M.; Baddigam, S.K.; Ingner, F.J.L.; Orthaber, A.; Gates, P.J. Mechanochemical Solvent-Free Catalytic C–H Methylation. Angew. Chem. Int. Ed. 2021, 60, 6660–6666.
  • Zhang, J.; Zhang, P.; Ma, Y.; Szostak, M. Mechanochemical Synthesis of Ketones via Chemoselective Suzuki–Miyaura Cross-Coupling of Acyl Chlorides. Org. Lett. 2022, 24, 2338–2343.
  • Kong, D.; Amer, M.M.; Bolm, C. Stainless Steel-Initiated Chloro Sulfoximidations of Allenes Under Solvent-Free Conditions in a Ball Mill. Green Chem. 2022, 24, 3125–3129.
  • Groutas, W.C.; Venkataraman, R.; Chong, L.S.; Yoder, J.E.; Epp, J.B.; Stanga, M.A.; Kim, E.-H. Isoxazoline Derivatives as Potential Inhibitors of the Proteolytic Enzymes Human Leukocyte Elastase, Cathepsin G and Proteinase 3: A Structure-Activity Relationship Study. Bioorg. Med. Chem. 1995, 3, 125–128.
  • Wityak, J.; Sielecki, T.M.; Pinto, D.J.; Emmett, G.; Sze, J.Y.; Liu, J.; Tobin, A.E.; Wang, S.; Jiang, B.; Ma, P.; Mousa, S.A.; Wexler, R.R.; Olson, R.E. Discovery of Potent Isoxazoline Glycoprotein IIb/IIIa Receptor Antagonists. J. Med. Chem. 1997, 40, 50–60.
  • Antczak, C.; Bauvois, B.; Monneret, C.; Florent, J.-C. A New Acivicin Prodrug Designed for Tumor-Targeted Delivery. Bioorg. Med. Chem. 2001, 9, 2843–2848.
  • Kumbhare, R.M.; Kosurkar, U.B.; Ramaiah, M.J.; Dadmal, T.L.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis and Biological Evaluation of Novel Triazoles and Isoxazoles Linked 2-Phenyl Benzothiazole as Potential Anticancer Agents. Bioorg. Med. Chem. Lett. 2012, 22, 5424–5427.
  • Hamama, W.S.; Ibrahim, M.E.; Zoorob, H.H. Synthesis and Biological Evaluation of Some Novel Isoxazole Derivatives. J. Heterocycl. Chem. 2017, 54, 341–346.
  • Changtam, C.; Hongmanee, P.; Suksamrarn, A. Isoxazole Analogs of Curcuminoids with Highly Potent Multidrug-Resistant Antimycobacterial Activity. Eur. J. Med. Chem. 2010, 45, 4446–4457.
  • Silva, N.M.; Tributino, J.L.M.; Miranda, A.L.P.; Barreiro, E.J.; Fraga, C.A.M. New Isoxazole Derivatives Designed as Nicotinic Acetylcholine Receptor Ligand Candidates. Eur. J. Med. Chem. 2002, 37, 163–170.
  • Kumar, J.; Chawla, G.; Akhtar, M.; Sahu, K.; Rathore, V.; Sahu, S. Design, Synthesis and Pharmacological Evaluation of Some Novel Derivatives of 1-{[3-(Furan-2-yl)-5-Phenyl-4,5-Dihydro-1,2-Oxazol-4-yl]Methyl}-4-Methyl Piperazine. Arab. J. Chem. 2017, 10, 141–149.
  • Buoli, M.; Grassi, S.; Ciappolino, V.; Serati, M.; Altamura, A.C. The Use of Zonisamide for the Treatment of Psychiatric Disorders: A Systematic Review. Clin. Neuropharmacol. 2017, 40, 85–92.
  • Bode, J.W.; Fraefel, N.; Muri, D.; Carreira, E.M. A General Solution to the Modular Synthesis of Polyketide Building Blocks by Kanemasa Hydroxy-Directed Nitrile Oxide Cycloadditions. Angew. Chem. Int. Ed. 2001, 40, 2082–2085.
  • Minter, A.R.; Fuller, A.A.; Mapp, A.K. A Concise Approach to Structurally Diverse β-Amino Acids. J. Am. Chem. Soc. 2003, 125, 6846–6847.
  • Maimone, T.J.; Shi, J.; Ashida, S.; Baran, P.S. Total Synthesis of Vinigrol. J. Am. Chem. Soc. 2009, 131, 17066–17067.
  • Tang, S.; He, J.; Sun, Y.; He, L.; She, X. Efficient and Regioselective Synthesis of 5-Hydroxy-2-Isoxazolines: Versatile Synthons for Isoxazoles, β-Lactams, and γ-Amino Alcohols. J. Org. Chem. 2010, 75, 1961–1966.
  • Choe, H.; Cho, H.; Ko, H.-J.; Lee, J. Total Synthesis of (+)-Pochonin D and (+)-Monocillin II via Chemo- and Regioselective Intramolecular Nitrile Oxide Cycloaddition. Org. Lett. 2017, 19, 6004–6007.
  • Nomura, T.; Yokoshima, S.; Fukuyama, T. Total Synthesis of Huperzine R. Org. Lett. 2018, 20, 119–121.
  • Moriya, O.; Nakamura, H.; Kageyama, T.; Urata, Y. Synthesis of Isoxazolines and Isoxazoles from Aldoximes by the Use of Sodium Bromite with Organotin Halide. Tetrahedron Lett. 1989, 30, 3987–3990.
  • Radhakrishna, A.S.; Sivaprakash, K.; Singh, B.B. Iodobenzene Dichloride-An Efficient Reagent for Preparation of Nitrile Oxides from Aldoximes. Synth. Commun. 1991, 21, 1625–1629.
  • Kiegiel, J.; Popławska, M.; Jóźwik, J.; Kosior, M.; Jurczak, J. New Method of In Situ Generation of Nitrile Oxides by MnO2 Oxidation of Aldoximes. Tetrahedron Lett. 1999, 40, 5605–5608.
  • Pandit, P.; Chatterjee, N.; Halder, S.; Hota, S.K.; Patra, A.; Maiti, D.K. PhIO as a Powerful Cyclizing Reagent: Regiospecific [3+2]-Tandem Oxidative Cyclization of Imine Toward Cofacially Self-Aggregated Low Molecular Mass Organic Materials. J Org. Chem. 2009, 74, 2581–2584.
  • Mendelsohn, B.A.; Lee, S.; Kim, S.; Teyssier, F.; Aulakh, V.S.; Ciufolini, M.A. Oxidation of Oximes to Nitrile Oxides with Hypervalent Iodine Reagents. Org. Lett. 2009, 11, 1539–1542.
  • Minakata, S.; Okumura, S.; Nagamachi, T.; Takeda, Y. Generation of Nitrile Oxides from Oximes Using t-BuOI and Their Cycloaddition. Org. Lett. 2011, 13, 2966–2969.
  • Pal, G.; Paul, S.; Ghosh, P.P.; Das, A.R. PhIO Promoted Synthesis of Nitrile Imines and Nitrile Oxides Within a Micellar Core in Aqueous Media: A Regiocontrolled Approach to Synthesizing Densely Functionalized Pyrazole and Isoxazoline Derivatives. RSC Adv. 2014, 4, 8300–8307.
  • Yoshimura, A.; Nguyen, K.C.; Rohde, G.T.; Saito, A.; Yusubov, M.S.; Zhdankin, V.V. Oxidative Cycloaddition of Aldoximes with Maleimides Using Catalytic Hydroxy(Aryl)Iodonium Species. Adv. Synth. Catal. 2016, 358, 2340–2344.
  • Gao, J.; Wang, G.-W. Direct Oxidative Amidation of Aldehydes with Anilines Under Mechanical Milling Conditions. J. Org. Chem. 2008, 73, 2955–2958.
  • Wang, G.-W.; Gao, J. Solvent-Free Bromination Reactions with Sodium Bromide and Oxone Promoted by Mechanical Milling. Green Chem. 2012, 14, 1125–1131.
  • Schmidt, R.; Stolle, A.; Ondruschka, B. Aromatic Substitution in Ball Mills: Formation of Aryl Chlorides and Bromides Using Potassium Peroxomonosulfate and NaX. Green Chem. 2012, 14, 1673–1679.
  • Chen, K.; Niu, C.; Wang, G.-W. Reaction of Aldoximes with Sodium Chloride and Oxone Under Ball-Milling Conditions. Molecules 2020, 25, 3719.
  • Fang, R.-K.; Chen, K.; Niu, C.; Wang, G.-W. Mechanochemical Dimerization of Aldoximes to Furoxans. Molecules 2022, 27, 2604.
  • Friščić, T.; Jones, W. Recent Advances in Understanding the Mechanism of Cocrystal Formation via Grinding. Cryst. Growth Des. 2009, 9, 1621–1637.
  • Štrukil, V.; Margetić, D.; Igrc, M.D.; Eckert-Maksić, M.; Friščić, T. Desymmetrisation of Aromatic Diamines and Synthesis of Non-Symmetrical Thiourea Derivatives by Click-Mechanochemistry. Chem. Commun. 2012, 48, 9705–9707.
  • Tan, D.; Štrukil, V.; Mottillo, C.; Friščić, T. Mechanosynthesis of Pharmaceutically Relevant Sulfonyl-(Thio)Ureas. Chem. Commun. 2014, 50, 5248–5250.
  • Li, H.-G.; Wang, G.-W. Liquid-Assisted One-Pot Mechanosynthesis and Properties of Neutral Donor-Acceptor [2]Rotaxanes. J. Org. Chem. 2017, 82, 6341–6348.
  • Zhao, G.; Liang, L.; Wen, C.H.E.; Tong, R. In Situ Generation of Nitrile Oxides from NaCl−Oxone Oxidation of Various Aldoximes and Their 1,3-Dipolar Cycloaddition. Org. Lett. 2019, 21, 315–319.
  • Xiang, C.; Li, T.; Yan, J. Hypervalent Iodine–Catalyzed Cycloaddition of Nitrile Oxides to Alkenes. Synth. Commun. 2014, 44, 682–688.
  • Li, C.; Deng, H.; Li, C.; Jia, X.; Li, J. Palladium-Catalyzed Synthesis of Δ2-Isoxazoline from Toluene Derivatives Enabled by the Triple Role of Silver Nitrate. Org. Lett. 2015, 17, 5718–5721.
  • Wang, D.-J.; Chen, B.-Y.; Wang, Y.-Q.; Zhang, X.-W. Ruthenium-Catalyzed Direct Transformation of Alkenyl Oximes to 5-Cyanated Isoxazolines: A Cascade Approach Based on Non-Stabilized Radical Intermediate. Eur. J. Org. Chem. 2018, 1342–1346.
  • Han, L.; Zhang, B.; Zhu, M.; Yan, J. An Environmentally Benign Synthesis of Isoxazolines and Isoxazoles Mediated by Potassium Chloride in Water. Tetrahedron Lett. 2014, 55, 2308–2311.
  • Kung, K.K.-Y.; Lo, V.K.-Y.; Ko, H.-M.; Li, G.-L.; Chan, P.-Y.; Leung, K.-C.; Zhou, Z.; Wang, M.-Z.; Che, C.-M.; Wong, M.-K. Cyclometallated Gold(III) Complexes as Effective Catalysts for Synthesis of Propargylic Amines, Chiral Allenes and Isoxazoles. Adv. Synth. Catal. 2013, 355, 2055–2070.
  • Cosimelli, B.; Simorini, F.; Taliani, S.; Motta, C.L.; Settimo, F.D.; Severi, E.; Greco, G.; Novellino, E.; Costa, B.; Pozzo, E.D.; Bendinelli, S.; Martini, C. Tertiary Amides with a Five-Membered Heteroaromatic Ring as New Probes for the Translocator Protein. Eur. J. Med. Chem. 2011, 46, 4506–4520.
  • Kobayashi, E.; Togo, H. Facile One-Pot Transformation of Primary Alcohols Into 3-Aryland 3-Alkyl-Isoxazoles and -Pyrazoles. Synthesis 2019, 51, 3723–3735.