2,070
Views
15
CrossRef citations to date
0
Altmetric
Research Article

High-performance visible-light active Sr-doped porous LaFeO3 semiconductor prepared via sol–gel method

ORCID Icon, , , , , , , , & show all
Pages 546-556 | Received 14 Feb 2022, Accepted 06 Aug 2022, Published online: 21 Aug 2022

References

  • Du, J.; Ma, S.; Liu, H.; Fu, H.; Li, L.; Li, Z.; Li, Y.; Zhou, J. Uncovering the Mechanism of Novel AgInS2 Nanosheets/TiO2 Nanobelts Composites for Photocatalytic Remediation of Combined Pollution. Appl. Catal. B: Environ 2019, 259, 118062. doi:10.1016/j.apcatb.2019.118062.
  • Skliri, E.; Miao, J.W.; Xie, J.; Liu, G.F.; Salim, T.; Liu, B.; Zhang, Q.C.; Armatas, G.S. Assembly and Photochemical Properties of Mesoporous Networks of Spinel Ferrite Nanoparticles for Environmental Photocatalytic Remediation. Appl. Catal. B: Environ 2018, 227, 330–339. doi:10.1016/j.apcatb.2018.01.045.
  • Brillas, E.; Martínez-Huitle, C.A. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review. Appl. Catal. B: Environ 2015, 166-167, 603–643. doi:10.1016/j.apcatb.2014.11.016.
  • Khin, M.M.; Nair, A.S.; Babu, V.J.; Murugan, R.; Ramakrishna, S. A Review on Nanomaterials for Environmental Remediation. Energy Environ. Sci 2012, 5, 8075–8109. doi:10.1039/c2ee21818f.
  • Jiang, G.M.; Lan, M.; Zhang, Z.Y.; Lv, X.S.; Lou, Z.; Xu, X.H.; Dong, F.; Zhang, S. Identification of Active Hydrogen Species on Palladium Nanoparticles for an Enhanced Electrocatalytic Hydrodechlorination of 2,4-Dichlorophenol in Water. Environ. Sci. Technol 2017, 51, 7599–7605. doi:10.1021/acs.est.7b01128.
  • Bystol, A.J.; Whitcomb, J.L.; Campiglia, A.D. Solid−Liquid Extraction Laser Excited Time-Resolved Shpol'skii Spectrometry:  A Facile Method for the Direct Detection of 15 Priority Pollutants in Water Samples. Environ. Sci. Technol 2001, 35, 2566–2571. doi:10.1021/es010575b.
  • Melián, E.P.; Díaz, O.G.; Rodríguez, J.M.D.; Araña, J.; Peña, J.P. Adsorption and Photocatalytic Degradation of 2,4-Dichlorophenol in TiO2 Suspensions. Effect of Hydrogen Peroxide, Sodium Peroxodisulphate and Ozone. Appl. Catal., A 2013, 455, 227–233. doi:10.1016/j.apcata.2013.02.007.
  • Khairnar, S.D.; Shrivastava, V.S. Facile Synthesis of Nickel Oxide Nanoparticles for the Degradation of Methylene Blue and Rhodamine B dye: A Comparative Study. J. Taibah. Univ. Sci 2019, 13, 1108–1118. doi:10.1080/16583655.2019.1686248.
  • Adole, V.A.; Pawar, T.B.; Koli, P.B.; Jagdale, B.S. Exploration of Catalytic Performance of Nano-La2O3 as an Efficient Catalyst for Dihydropyrimidinone/Thione Synthesis and gas Sensing. J. Nanostructure Chem 2019, 9, 61–76. doi:10.1007/s40097-019-0298-5.
  • Singh, S.; Mahalingam, H.; Singh, P.K. Polymer-supported Titanium Dioxide Photocatalysts for Environmental Remediation: A Review. Appl. Catal. A: Gen 2013, 462-463, 178–195. doi:10.1016/j.apcata.2013.04.039.
  • Shinde, R.S.; Khairnar, S.D.; Patil, M.R.; Adole, V.A.; Koli, P.B.; Deshmane, V.V.; Halwar, D.K.; Shinde, R.A.; Pawar, T.B.; Jagdale, B.S.; Patil, A.V. Synthesis and Characterization of ZnO/CuO Nanocomposites as an Effective Photocatalyst and gas Sensor for Environmental Remediation. J. Inorg. Organomet 2022, 32, 1045–1066. doi:10.1007/s10904-021-02178-9.
  • Periyasamy, M.; Kar, A. Modulating the Properties of SnO2 Nanocrystals: Morphological Effects on Structural, Photoluminescence, Photocatalytic, Electrochemical and gas Sensing Properties. J. Mater. Chem. C 2020, 8, 4604–4635. doi:10.1039/C9TC06469A.
  • Xu, C.; Ravi Anusuyadevi, P.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured Materials for Photocatalysis. Chem. Soc. Rev 2019, 48, 3868–3902. doi:10.1039/C9CS00102F.
  • Garcia-Muñoz, P.; Fresno, F.; Lefevre, C.; Robert, D.; Keller, N. Synergy Effect Between Photocatalysis and Heterogeneous Photo-Fenton Catalysis on Ti-Doped LaFeO3 Perovskite for High Efficiency Light-Assisted Water Treatment. Catal. Sci. Technol 2020, 10, 1299–1310. doi:10.1039/C9CY02269D.
  • Wu, H.; Hu, R.; Zhou, T.; Li, C.; Meng, W.; Yang, J. A Novel Efficient Boron-Doped LaFeO3 Photocatalyst with Large Specific Surface Area for Phenol Degradation Under Simulated Sunlight. CrystEngComm 2015, 17, 3859–3865. doi:10.1039/C5CE00288E.
  • Thirumalairajan, S.; Girija, K.; Mastelaro, V.R.; Ponpandian, N. Photocatalytic Degradation of Organic Dyes Under Visible Light Irradiation by Floral-Like LaFeO3 Nanostructures Comprised of Nanosheet Petals. New J. Chem 2014, 38, 5480–5490. doi:10.1039/C4NJ01029A.
  • Rao, M.P.; Musthafa, S.J.; Wu, J.J.; Anandan, S. Facile Synthesis of Perovskite LaFeO3 Ferroelectric Nanostructures for Heavy Metal ion Removal Applications. Mater. Chem. Phys 2019, 232, 200–204. doi:10.1016/j.matchemphys.2019.04.086.
  • Dhiman, M.; Singhal, S. Effect of Doping of Different Rare Earth (Europium, Gadolinium, Dysprosium and Neodymium) Metal Ions on Structural, Optical and Photocatalytic Properties of LaFeO3 Perovskites. J. Rare. Earth 2019, 37, 1279–1287. doi:10.1016/j.jre.2018.12.015.
  • Xu, J.; Liu, C.; Niu, J.; Zhu, Y.; Zang, B.; Xie, M.; Chen, M. Synthesis of LaFeO3/Bi3NbO7 p-n Heterojunction Photocatalysts with Enhanced Visible-Light-Responsive Activity for Photocatalytic Reduction of Cr(VI). J. Alloys. Compd 2020, 815, 152492. doi:10.1016/j.jallcom.2019.152492.
  • Hao, X.C.; Zhang, Y.C. Low Temperature gel-Combustion Synthesis of Porous Nanostructure LaFeO3 with Enhanced Visible-Light Photocatalytic Activity in Reduction of Cr(VI). Mater. Lett 2017, 197, 120–122. doi:10.1016/j.matlet.2017.03.133.
  • Zhang, R.D.; Li, P.X.; Liu, N.; Yue, W.R.; Chen, B.H. Effect of Hard-Template Residues of the Nanocasted Mesoporous LaFeO3 with Extremely High Surface Areas on Catalytic Behaviors for Methyl Chloride Oxidation. J. Mater. Chem. A 2014, 2, 17329–17340. doi:10.1039/C4TA03615H.
  • Phan, T.T.N.; Nikoloski, A.N.; Bahri, P.A.; Li, D. Heterogeneous Photo-Fenton Degradation of Organics Using Highly Efficient Cu-Doped LaFeO3 Under Visible Light. J. Indus. Eng. Chem 2018, 61, 53–64. doi:10.1016/j.jiec.2017.11.046.
  • Xu, J.J.; Wang, Z.L.; Xu, D.; Meng, F.Z.; Zhang, X.B. 3D Ordered Macroporous LaFeO3 as Efficient Electrocatalyst for Li–O2 Batteries with Enhanced Rate Capability and Cyclic Performance. Energy Environ. Sci 2014, 7, 2213–2219. doi:10.1039/c3ee42934b.
  • Khine, M.S.S.; Chen, L.W.; Zhang, S.; Lin, J.Y.; Jiang, S.P. Syngas Production by Catalytic Partial Oxidation of Methane Over (La0.7A0.3)BO3 (A = Ba, Ca, Mg, Sr, and B = Cr or Fe) Perovskite Oxides for Portable Fuel Cell Applications. Int. J. Hydrogen. Energy 2013, 38, 13300–13308. doi:10.1016/j.ijhydene.2013.07.097.
  • Kumar, Y.; Regalado-Pérez, E.; Ayala, A.M.; Mathews, N.R.; Mathew, X. Effect of Heat Treatment on the Electrical Properties of Perovskite Solar Cells. Sol. Energy. Mat. Sol. Cell 2016, 157, 10–17. doi:10.1016/j.solmat.2016.04.055.
  • Zhao, J.; Liu, Y.P.; Li, X.W.; Lu, G.Y.; You, L.; Liang, X.; Liu, F.; Zhang, T.; Du, Y. Highly Sensitive Humidity Sensor Based on High Surface Area Mesophorous LaFeO3 Prepared by a Nanocasting Route. Sens. Actuators B 2013, 181, 802–809. doi:10.1016/j.snb.2013.02.077.
  • Faye, J.; Baylet, A.; Trentesaux, M.; Royer, S.; Dumeignil, F.; Duprez, D.; Valange, S.; Tatibouet, J.-M. Influence of Lanthanum Stoichiometry in La1−xFeO3−δ Perovskites on Their Structure and Catalytic Performance in CH4 Total Oxidation. Appl. Catal. B Environ 2012, 126, 134–143. doi:10.1016/j.apcatb.2012.07.001.
  • Li, X.; Zhang, H.B.; Liu, X.X.; Li, S.J.; Zhao, M.Y. XPS Study on O(1s) and Fe(2p) for Nanocrystalline Composite Oxide LaFeO3 with the Perovskite Structure. Mater. Chem. Phys 1994, 38, 355–362. doi:10.1016/0254-0584(94)90213-5.
  • Natile, M.M.; Galenda, A.; Glisenti, A. From La2O3 to LaCoO3: Xps analysis. Surf. Sci. Spect 2008, 15, 1–13. doi:10.1116/11.20061006.
  • Tahir, M.B.; Sagir, M.; Shahzad, K. Removal of Acetylsalicylate and Methyl-Theobromine from Aqueous Environment Using Nano-Photocatalyst WO3–TiO2@g-C3N4 Composite. J. Hazard. Mater 2019, 363, 205–213. doi:10.1016/j.jhazmat.2018.09.055.
  • Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental Implications of Hydroxyl Radicals (•OH). Chem. Rev 2015, 115, 13051–13092. doi:10.1021/cr500310b.
  • Teng, W.; Li, X.Y.; Zhao, Q.D.; Zhao, J.J.; Zhang, D.K. In Situ Capture of Active Species and Oxidation Mechanism of RhB and MB Dyes Over Sunlight-Driven Ag/Ag3PO4 Plasmonic Nanocatalyst. Appl. Catal. B: Environ 2012, 125, 538–545. doi:10.1016/j.apcatb.2012.05.043.
  • Khanchandani, S.; Kumar, S.; Ganguli, A.K. Comparative Study of TiO2/CuS Core/Shell and Composite Nanostructures for Efficient Visible Light Photocatalysis. ACS Sustain. Chem. Eng 2016, 4, 1487–1499. doi:10.1021/acssuschemeng.5b01460.
  • Yuan, Q.; Chen, L.; Xiong, M.; He, J.; Luo, S.-L.; Au, C.-T.; Yin, S.-F. Cu2O/BiVO4 Heterostructures: Synthesis and Application in Simultaneous Photocatalytic Oxidation of Organic Dyes and Reduction of Cr(VI) Under Visible Light. Chem. Eng. J 2014, 255, 394–402. doi:10.1016/j.cej.2014.06.031.
  • Liu, Y.J.; Liu, H.X.; Zhou, H.M.; Li, T.D.; Zhang, L. A Z-Scheme Mechanism of N-ZnO/g-C3N4 for Enhanced H2 Evolution and Photocatalytic Degradation. Appl. Surf. Sci 2019, 466, 133–140. doi:10.1016/j.apsusc.2018.10.027.