1,658
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Benign synthesis of therapeutic agents: domino synthesis of unsymmetrical 1,4-diaryl-1,4-dihydropyridines in the ball-mill

, , , , & ORCID Icon
Pages 881-892 | Received 05 Jul 2022, Accepted 22 Sep 2022, Published online: 05 Oct 2022

References

  • Domino Reactions: Concepts for Efficient Organic Synthesis. L.F. Tietze, Ed., Wiley-VCH, Weinheim (Germany), pp. 621. ISBN:978-3-527-33432-2 2014.
  • Volla, C. M. R.; Atodiresei, I.; Rueping, M., Catalytic C-C Bond-Forming Multi-Component Cascade or Domino Reactions: Pushing the Boundaries of Complexity in Asymmetric Organocatalysis. Chem. Rev. 2014, 114, 2390–2431. DOI:10.1021/cr400215u.
  • Zhu, J.; Bienaymé, H., Multicomponent Reactions. Weinheim: Wiley-VCH, 2005.
  • Ardila-Fierro, K. J.; Hernández, J. G., Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem. 2021, 14, 2145–2162. DOI: 10.1002/cssc.202100478.
  • Colacino, E.; Isoni, V.; Crawford, D.; Garcia, F., Upscaling Mechanochemistry: Challenges and Perspectives. Trends Chem. 2021, 3, 335–339. DOI: 10.1016/j.trechm.2021.02.008.
  • Galant, O.; Cerfeda, G.; McCalmont, A. S.; James, S. L.; Porcheddu, A.; Delogu, F.; Crawford, D. E.; Colacino, E.; Spatari, S., Mechanochemistry Can Reduce Life Cycle Environmental Impacts of Manufacturing Active Pharmaceutical Ingredients. ACS Sustain. Chem. Eng. 2022, 10, 1430–1439. DOI:10.1021/acssuschemeng.1c06434.
  • Sharma, P.; Vetter, C.; Ponnusamy, E.; Colacino, E., Assessing the Greenness of Mechanochemical Processes by DOZN 2.0 Tool. ACS Sustain. Chem. Eng. 2022, 10, 5110–5116. DOI: 10.1021/acssuschemeng.1c07981.
  • Leonardi, M.; Villacampa, M.; J.-C., M., Multicomponent Mechanochemical Synthesis. Chem. Sci. 2018, 9, 2042–2064. DOI: 10.1039/C7SC05370C.
  • Xu, H.; Liu, H.-W.; Chen, K.; Wang, G.-W., One-Pot Multicomponent Mechanosynthesis of Polysubstituted Trans-2,3-Dihydropyrroles and Pyrroles from Amines, Alkyne Esters, and Chalcones. J. Org. Chem. 2018, 83, 6035–6049. DOI: 10.1021/acs.joc.8b00665.
  • Krištofíková, D.; Mečiarová, M.; Rakovský, E.; Šebesta, R., Mechanochemically Activated Asymmetric Organocatalytic Domino Mannich Reaction-Fluorination. ACS Sustain. Chem. Eng. 2020, 8, 14417–14424. DOI: 10.1021/acssuschemeng.0c04260.
  • Piquero, M.; Font, C.; Gullón, N.; López-Alvarado, P.; Menéndez, J.-C., One-Pot Mechanochemical Synthesis of Mono- and Bis-Indolylquinones via Solvent-Free Multiple Bond-Forming Processes. ChemSusChem. 2021, 14, 4764–4775. DOI: 10.1002/cssc.202101529.
  • Leonardi, M.; Estévez, V.; Villacampa, M.; Menéndez, J. C., Diversity-Oriented Synthesis of Complex Pyrrole-Based Architectures from Very Simple Starting Materials. Adv. Synth. Catal. 2019, 361, 2054–2074. DOI: 10.1002/adsc.201900044.
  • Leonardi, M.; Villacampa, M.; Menéndez, J.-C., Mild and General Synthesis of Pyrrolo[2,1-a]Isoquinolines and Related Polyheterocyclic Frameworks from Pyrrole Precursors Derived from a Mechanochemical Multicomponent Reaction. J. Org. Chem. 2017, 82, 2570–2578. DOI: 10.1021/acs.joc.6b02995.
  • Shearouse, W. C.; Shumba, M. Z.; Mack, J., A Solvent-Free, One-Step, One-Pot Gewald Reaction for Alkyl-Aryl Ketones via Mechanochemistry. Appl. Sci. 2014, 4, 171–179. DOI: 10.3390/app4020171.
  • Jadhav, S. A.; Shioorkar, M. G.; Chavan, O. S.; Chavan, R. V.; Pardeshi, R. K., An eco-Friendly Solvent-Free one-pot Multi-Component Synthesis of Coumarin Thiazolidinone Derivatives. Pharma Chem. 2015, 7, 329–334.
  • Dekamin, M. G.; Eslami, M., Highly Efficient Organocatalytic Synthesis of Diverse and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans Under Mechanochemical Ball Milling. Green Chem. 2014, 16, 4914–4921. DOI: 10.1039/c4gc00411f.
  • Sahoo, P. K.; Bose, A.; Mal, P., Solvent-Free Ball-Milling Biginelli Reaction by Subcomponent Synthesis. Eur. J. Org. Chem. 2015, 2015, 6994–6998. DOI: 10.1002/ejoc.201501039.
  • Krauskopf, F.; Truong, K.-N.; Rissanen, K.; Bolm, C., 2,3-Dihydro-1,2,6-Thiadiazine 1-Oxides by Biginelli-Type Reactions with Sulfonimidamides Under Mechanochemical Conditions. Org. Lett. 2021, 23, 2699–2703. DOI: 10.1021/acs.orglett.1c00596
  • Martina, K.; Rotolo, L.; Porcheddu, A.; Delogu, F.; Bysouth, S. R.; Cravotto, G.; Colacino, E., High Throughput Mechanochemistry: Application to Parallel Synthesis of Benzoxazines. Chem. Comm. 2018, 54, 551–554. DOI: 10.1039/C7CC07758K
  • Fiore, C.; Sović, I.; Lukin, S.; Halasz, I.; Martina, K.; Delogu, F.; Ricci, P. C.; Porcheddu, A.; Schemchuk, O.; Braga, D.; Pirat, J.-L.; Virieux, D.; Colacino, E., The Kabachnik-Fields Reaction by Mechanochemistry: New Horizons from old Methods. ACS Sustain. Chem. Eng. 2020, 8, 18889–18902. DOI: 10.1021/acssuschemeng.0c05744.
  • Polindara-García, L. A.; Juaristi, E., Synthesis of Ugi 4-CR and Passerini 3-CR Adducts Under Mechanochemical Activation. Eur. J. Org. Chem. 2016, 2016, 1095–1102. DOI: 10.1002/ejoc.201501371.
  • Colacino, E.; Porcheddu, A.; Charnay, C.; Delogu, F., From Enabling Technologies to Medicinal Mechanochemistry: An eco-Friendly Access to Hydantoin-Based Active Pharmaceutical Ingredients. React. Chem. Eng. 2019, 4, 1179–1188. DOI: 10.1039/c9re00069k.
  • Tan, D.; Loots, L.; Friščić, T., Towards Medicinal Mechanochemistry: Evolution of Milling from Pharmaceutical Solid Form Screening to the Synthesis of Active Pharmaceutical Ingredients (APIs). Chem. Commun. 2016, 52, 7760–7781. DOI: 10.1039/C6CC02015A.
  • Ying, P.; Yu, J.; Su, W., Liquid-Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv. Synth. Catal. 2021, 363, 1246–1271. DOI: 10.1002/adsc.202001245.
  • Pérez-Venegas, M.; Juaristi, E., Mechanochemical and Mechanoenzymatic Synthesis of Pharmacologically Active Compounds: A Green Perspective. ACS Sustain. Chem. Eng. 2020, 8, 8881–8893. DOI: 10.1021/acssuschemeng.0c01645.
  • Gonnet, L.; Tintillier, T.; Venturini, N.; Konnert, L.; Hernandez, J.-F.; Lamaty, F.; Laconde, G.; Martinez, J.; Colacino, E., N-acyl Benzotriazole Derivatives for the Synthesis of di- and Tripeptides and Peptide Biotinylation by Mechanochemistry. ACS Sustain. Chem. Eng. 2017, 5, 2936–2941. DOI: 10.1021/acssuschemeng.6b02439
  • Yuan, Y.; Wang, L.; Porcheddu, A.; Colacino, E.; Solin, N., Mechanochemical Preparation of Protein: Hydantoin Hybrids and Their Release Properties. ChemSusChem. 2022, 15, in press. DOI: 10.1002/cssc.202102097.
  • Konnert, L.; Reneaud, B.; Marcia de Figueiredo, R.; Campagne, J.-M.; Lamaty, F.; Martinez, J.; Colacino, E., Mechanochemical Preparation of Hydantoins from Amino Esters: Application to the Synthesis of the Antiepileptic Drug Phenytoin. J. Org. Chem. 2014, 79, 10132–10142. DOI: 10.1021/jo5017629.
  • Konnert, L.; Dimassi, M.; Gonnet, L.; Lamaty, F.; Martinez, J.; Colacino, E., Poly(Ethylene) Glycols and Mechanochemistry for the Preparation of Bioactive 3,5-Disubstituted Hydantoins. RSC Adv. 2016, 6, 36978–36986. DOI: 10.1039/c6ra03222b.
  • Porcheddu, A.; Delogu, F.; De Luca, L.; Colacino, E., From Lossen Transposition to Solventless Medicinal Mechanochemistry”. ACS Sustain. Chem. Eng. 2019, 7, 12044–12051. DOI: 10.1021/acssuschemeng.9b00709.
  • Martins, I. C. B.; Carta, M.; Haferkamp, S.; Feller, T.; Delogu, F.; Colacino, E.; Emmerling, F., Mechanochemical N-Chlorination Reaction of Hydantoin: In Situ Real-Time Kinetic Study by Powder X-ray Diffraction and Raman Spectroscopy. ACS Sustain. Chem. Eng. 2021, 9, 12591–12601. DOI: 10.1021/acssuschemeng.1c03812.
  • Colacino, E.; Porcheddu, A.; Halasz, I.; Charnay, C.; Delogu, F.; Guerra, R.; Fullenwarth, J., Mechanochemistry for “no Solvent, no Base” Preparation of Hydantoin-Based Active Pharmaceutical Ingredients: Nitrofurantoin and Dantrolene. Green Chem. 2018, 20, 2973–2977. DOI: 10.1039/C8GC01345D.
  • Crawford, D. E.; Porcheddu, A.; McCalmont, A. S.; Delogu, F.; James, S. L.; Colacino, E., Twin-Screw Extrusion for Hydrazone Synthesis, Generating Active Pharmaceutical Ingredients (APIs). ACS Sustain. Chem. Eng. 2020, 8, 12230–12238. DOI: 10.1021/acssuschemeng.0c03816.
  • Sović, I.; Lukin, S.; Meštrović, E.; Halasz, I.; Porcheddu, A.; Delogu, F.; Ricci, P. C.; Caron, F.; Perilli, T.; Dogan, A.; Colacino, E., Mechanochemical Preparation of Active Pharmaceutical Ingredients Monitored by in Situ Raman Spectroscopy. ACS Omega 2020, 5, 28663–28672. DOI: 10.1021/acsomega.0c03756.
  • Mocci, R.; Colacino, E.; De Luca, L.; Fattuoni, C.; Porcheddu, A.; Delogu, F., The Mechanochemical Beckmann Rearrangement: An Eco-Efficient “Cut-and-Paste” Strategy to Design “The Good Old Amide Bond. ACS Sustain. Chem. Eng. 2021, 9, 2100–2114. DOI: 10.1021/acssuschemeng.0c07254.
  • Wan, J.-P.; Liu, Y., Recent Advances in new Multicomponent Synthesis of Structurally Diversified 1,4-Dihydropyridines. RSC Adv. 2012, 2, 9763–9777. DOI: 10.1039/c2ra21406g.
  • Vchislo, N. V., α,β-Unsaturated Aldehydes as C-Building Blocks in the Synthesis of Pyridines, 1,4-Dihydropyridines and 1,2-Dihydropyridines. Asian J. Chem. 2019, 8, 1207–1226. DOI: 10.1002/ajoc.201900275.
  • Anantha, I. S. S.; Kerru, N.; Maddila, S.; Jonnalagadda, S. B., Recent Progresses in the Multicomponent Synthesis of Dihydropyridines by Applying Sustainable Catalysts Under Green Conditions. Front. Chem. 2021, 9800236. DOI: 10.3389/fchem.2021.800236.
  • Sharma, V. K.; Singh, S. K., Synthesis, Utility and Medicinal Importance of 1,2- & 1,4-Dihydropyridines. RSC Adv. 2017, 7, 2682–2732. DOI: 10.1039/c6ra24823c.
  • Reddy, G. M.; Shiradkar, M.; Chakravarthy, A. K., Chemical and Pharmacological Significance of 1,4-Dihydropyridines. Curr. Org. Chem. 2007, 11, 847–852. DOI: 10.2174/138527207781024058.
  • Talwan, P.; Chaudhary, S.; Kumar, K.; Rawal, R. K., Chemical and Medicinal Versatility of Substituted 1,4-Dihydropyridines. Curr. Bioact. Compd. 2017, 13, 109–120. DOI:10.2174/1573407212666160607090202.
  • Malhi, D. S.; Kaur, M.; Soh, H. S., Effect of Substitutions on 1, 4-Dihdropyridines to Achieve Potential Anti-Microbial Drugs: A Review. Chem. Select. 2019, 4, 11321–11336. DOI: 10.1002/slct.201902354
  • Carosati, E.; Ioan, P.; Micucci, M.; Broccatelli, F.; Cruciani, G.; Zhorov, B. S.; Chiarini, A.; Budriesi, R., 1,4-Dihydropyridine Scaffold in Medicinal Chemistry, The Story So Far And Perspectives (Part 2): Action in Other Targets and Antitargets. Curr. Med. Chem. 2012, 19, 4306–4323. DOI: 10.2174/092986712802884204.
  • Gerber, J. G. a. N., A. S. Gilman and Goodman’s the Pharmacological Basis of Therapeutics. 8th edn.: Gilman, A. G., Rall, T. W., Nies, A. S. and Taylor, P., Eds.; Pergamon Press: New York, 1990.
  • Hantzsch, A., Condensationsprodukte aus Aldehydammoniak und Ketonartigen Verbindungen. Ber. Dtsch. Chem. Ges. 1881, 14, 1637–1638. DOI: 10.1002/cber.18810140214.
  • Sridharan, V.; Perumal, P. T.; Avendano, C.; Menéndez, J.-C., A new Three-Component Domino Synthesis of 1,4-Dihydropyridines. Tetrahedron 2007, 63, 4407–4413. DOI: 10.1016/j.tet.2007.03.092.
  • Kumar, A.; Sharma, S., A Grinding-Induced Catalyst- and Solvent-Free Synthesis of Highly Functionalized 1,4-Dihydropyridines via a Domino Multicomponent Reaction. Green Chem. 2011, 13, 2017–2020. DOI: 10.1039/c1gc15223h.
  • Jiang, L.; Ye, L.-D.; Gy, J.-L.; Su, W.-K.; Ye, W.-T., Mechanochemical Enzymatic Synthesis of 1,4-Dihydropyridine Calcium Antagonists and Derivatives. J. Chem. Tech. Biotechnol. 2019, 94, 2555–2560. DOI: 10.1002/jctb.6051.
  • For a review on mechanochemical rearrangement, p. s. V., D.; Delogu, F.; Porcheddu, A.; Garcia, F.; Colacino, E. ‘Mechanochemical rearrangements’ J. Org. Chem. 2021, 86, 13885−13894. DOI: 10.1021/acs.joc.1c01323
  • For the European Commission's list of critical raw materials (CRMs), please visit. https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed May 31, 2022).
  • Porcheddu, A.; Cuccu, F.; De Luca, L.; Delogu, F.; Colacino, E.; Solin, N.; Mocci, R., Mechanochemistry: New Tools to Navigate the Uncharted Territory of “Impossible” Reactions”. ChemSusChem. 2022, in press. DOI: 10.1002/cssc.202200362R1.
  • Hasa, D.; Jones, W., Screening for new Pharmaceutical Solid Forms Using Mechanochemistry: A Practical Guide. Adv. Drug. Del. Rev. 2017, 117, 147–161. DOI: 10.1016/j.addr.2017.05.001.
  • For a review on the use of CAN as Lewis acid catalyst, please see; Sridharan, V.; Menéndez, J. C., Cerium(IV) ammonium nitrate as a catalyst in organic synthesis. Chem. Rev. 2010, 110, 3805–3849. DOI: 10.1021/cr100004p
  • Khanna, R.; Dalal, A.; Kadyan, K.; Kumar, R.; Kumar, P.; Kamboj, R. C., CAN Mediated Mechanochemical Synthesis of Substituted Pyridine Derivatives. Lett. Org. Chem. 2018, 15, 673–677. DOI: 10.2174/1570178615666180102153707.
  • For an additional example of oxidative aromatisation to pyridines mediated by hypervalent iodine reagents, p. s. K., P., Solid State Oxidative Aromatization of Hantzsch 1,4-Dihydropyridines to Pyridines Using Iodobenzene Diacetate or Hydroxy(tosyloxy)iodobenzene. Chin. J. Chem. 2009, 27, 1487-1491. DOI: 10.1002/cjoc.200990250
  • Das, B.; Suneel, K.; Venkateswarlu, K.; Ravikanth, B., Sulfonic Acid Functionalized Silica: An Efficient Heterogeneous Catalyst for a Three-Component Synthesis of 1,4-Dihydropyridines Under Solvent-Free Conditions. Chem. Pharm. Bull. 2008, 56, 366–368. DOI: 10.1248/cpb.56.366.
  • Liu, F.-J.; Sun, T.-T.; Yang, Y.-G.; Huang, C.; Chen, X.-B., Divergent Synthesis of Dual 1,4-Dihydropyridines with Different Substituted Patterns from Enaminones and Aldehydes Through Domino Reactions. RSC Adv. 2018, 8, 12635–12640. DOI: 10.1039/C8RA01236A.
  • Kumar, A.; Maurya, R. A., Organocatalysed Three-Component Domino Synthesis of 1,4- Dihydropyridines Under Solvent Free Conditions. Tetrahedron 2008, 64, 3477–3482. DOI: 10.1016/j.tet.2008.02.022.
  • Stolle, A.; Schmidt, R.; Jacob, K., Scale-up of Organic Reactions in Ball Mills: Process Intensification with Regard to Energy Efficiency and Economy of Scale. Faraday Discuss. 2014, 170, 267–286. DOI: 10.1039/C3FD00144J.
  • The reaction was initially explored in neat grinding conditions. Initial tests using EtOH as LAG solvent were encouraging. Therefore, the amount of EtOH to be added was determined after a series of experiments, using incremental amounts of LAG solvent, screening the reaction with η = 0.1, 0.2, 0.5, 1, and 2 μL/mg. The best results were obtained with η = 2 μL/mg.
  • Cardenas, M. M.; Nguyen, A. D.; Brown, Z. E.; Heydari, B. S.; Heydari, B. S.; Vaidya, S. D.; Gustafson, J. L., Atropisomerism as Inspiration for new Chemistry. ARKIVOC 2021, part i, 20-47. DOI: 10.24820/ark.5550190.p011.382.
  • Jiang, J.; Yu, J.; Sun, X.-X.; Rao, Q.-Q.; Gong, L.-Z., Organocatalytic Asymmetric Three-Component Cyclization of Cinnamaldehydes and Primary Amines with 1,3-Dicarbonyl Compounds: Straightforward Access to Enantiomerically Enriched Dihydropyridines. Angew. Chem. Int. Ed. 2008, 47, 2458–2462. DOI: 10.1002/anie.200705300.
  • Kumar, A.; Maurya, R. A.; Sharma, S.; Kumar, M.; Bhatia, G., Synthesis and Biological Evaluation of N-Aryl-1,4-Dihydropyridines as Novel Antidyslipidemic and Antioxidant Agents. Eur. J. Med. Chem. 2010, 45, 501–509. DOI: 10.1016/j.ejmech.2009.10.036.
  • Bartoli, G.; Babiuch, K.; Bosco, M.; Carlone, A.; Galzerano, P.; Melchiorre, P.; Sambri, L., Simple and Convenient Route Giu to 1,4-Dihydropyridines Synlett 2007, 18, 2897–2901. DOI: 10.1055/s-2007-990839.
  • Lakshmi Kantam, M.; Ramani, T.; Chakrapani, L.; Choudary, B. M., Synthesis of 1,4-Dihydropyridine Derivatives Using Nanocrystalline Copper(II) Oxide Catalyst. Catal. Commun. 2009, 10, 370–372. DOI: 10.1016/j.catcom.2008.09.023.
  • Yang, S.-H.; Zhao, F.-Y.; Lü, H.-Y.; Deng, J.; Zhang, Z.-H., An Efficient One-Pot Synthesis of 1,4-Dihydropyridines Catalyzed by Magnetic Nanocrystalline Fe3O4. J. Heter. Chem. 2012, 49, 1126–1129. DOI: 10.1002/jhet.953.
  • Kahandal, S. S.; Kale, S. R.; Gawande, M. B.; Jayaram, R. V., A Mild Route for one pot Synthesis of 5,6-Unsubstituted 1,4-Dihydropyridines Catalyzed by Sulphated Mixed Metal Oxides. Catal. Sci. Technol. 2014, 4, 672–680. DOI: 10.1039/C3CY00651D.
  • Krueder, A. D.; T. House-Knight; J. Whitford; E. Ponnusamy; P. Miller; N. Jesse; R. Rodenborn; S. Sayag; M. Gebel; I. Aped; I. Sharfstein; E. Manaster; I. Ergaz; A. Harris; Grice, L. N., A Method for Assessing Greener Alternatives Between Chemical Products Following the 12 Principles of Green Chemistry. ACS Sustain. Chem. Eng. 2017, 5, 2927–2935. DOI: 10.1021/acssuschemeng.6b02399. DOZN tool is a universal tool, suitable for scoring any process, no matter the activation technique used, once the detailed experimental/process conditions are known. The DOZN 2.0 tool is accessible free of charge here: https://bioinfo.merckgroup.com/dozn (accessed September 3, 2022).
  • Ponnusamy, E. S.; Whitford, J., A new Greener Alternative Scoring Matrix Based on Twelve Principles of Green Chemistry. Asian J. Sci. Technol. 2018, 9, 7312–7318.
  • Please refer to ESI for the scores calculated for each of the 12 Principles of Green Chemistry.
  • Veillasamy, S.; Paramasivan, T. P.; Avendaño, C.; Menéndez, J. C., A New Three-Component Domino Synthesis of 1,4-Dihydropyridines. Tetrahedron 2007, 63, 4407–4413. DOI: 10.1016/j.tet.2007.03.092.
  • For more information on COST Action CA18112 ‘Mechanochemistry for Sustainable Industry’. http://www.mechsustind.eu/ (accessed May 21, 2022).
  • Hernández, J. G.; Halasz, I.; Crawford, D. E.; Krupička, M.; Baláž, M.; André, V.; Vella-Zarb, L.; Niidu, A.; García, F.; Maini, L.; Colacino, E., European Research in Focus: Mechanochemistry for Sustainable Industry (MechSustInd). Eur. J. Org. Chem. 2020, 8–9. DOI: 10.1002/ejoc.201901718