1,937
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH LETTER

Reactivity trends for mechanochemical reductive coupling of aryl iodides

, , , &
Article: 2153628 | Received 02 May 2022, Accepted 27 Nov 2022, Published online: 10 Feb 2023

References

  • Takacs, L. The Historical Development of Mechanochemistry. Chem. Soc. Rev. 2013, 42, 7649–7659. DOI:10.1039/c2cs35442j.
  • James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. DOI:10.1039/c1cs15171a.
  • Ardila-Fierro, K.J.; Hernandez, J.G. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem. 2021, 14, 2145–2162. DOI:10.1002/cssc.202100478.
  • Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an Emerging Tool for Molecular Synthesis: What Can It Offer? Chem. Sci. 2018, 9, 3080–3094. DOI:10.1039/C7SC05371A.
  • Tan, D.; Friščić, T. Mechanochemistry for Organic Chemists: An Update. Eur. J. Org. Chem. 2018, 18–33. DOI:10.1002/ejoc.201700961.
  • (a) Achar, T.K.; Bose, A.; Mal, P. Mechanochemical Synthesis of Small Organic Molecules. Beilstein J. Org. Chem. 2017, 13, 1907–1931. DOI:10.3762/bjoc.13.186. (b) Jiang, Z.J.; Li, Z.H.; Yu, J.B.; Su, W.K. Liquid-Assisted Grinding Accelerating: Suzuki-Miyaura Reaction of Aryl Chlorides under High-Speed Ball-Milling Conditions. J. Org. Chem. 2016, 81, 10049–10055. DOI:10 .1021/acs.joc.6b01938. (c) Grätz, S.; Wolfrum, B.; Borchardt, L. Mechanochemical Suzuki Polycondensation – From Linear to Hyperbranched Polyphenylenes. Green Chem. 2017, 19, 2973–2979. DOI:10 .1039/C7GC00693D. (d) Vogt, C.G.; Grätz, S.; Lukin, S.; Halasz, I.; Etter, M.; Evans, J.D.; Borchardt, L. Direct Mechanocatalysis: Palladium as Milling Media and Catalyst in the Mechanochemical Suzuki Polymerization. Angew. Chem. Int. Ed. 2019, 58, 18942–18947. DOI:10 .1002/anie.201911356. (e) Seo, T.; Ishiyama, T.; Kubota, K.; Ito, H. Solid-State Suzuki-Miyaura Cross-Coupling Reactions: Olefin-Accelerated C-C Coupling Using Mechanochemistry. Chem. Sci. 2019, 10, 8202–8210. DOI:10 .1039/C9SC02185J.
  • Goldfogel, M.J.; Huang, L.; Weix, D.J. Cross-Electrophile Coupling: Principles and New Reactions. In Nickel Catalysis in Synthesis: Methods and Reactions: Ogoshi, S., Ed.; Wiley-VCH: Weinheim, 2020.
  • Nicholson, W.I.; Howard, J.L.; Magri, G.; Seastram, A.C.; Khan, A.; Bolt, R.R.A.; Morrill, L.C.; Richards, E.; Browne, D.L. Ball-Milling-Enabled Reactivity of Manganese Metal. Angew. Chem. Int. Ed. 2021, 60, 23128–23133. DOI:10.1002/anie.202108752.
  • (a) Do, J.; Mottillo, C.; Tan, D.; Štrukil, V.; Friščić, T. Mechanochemical Ruthenium-Catalyzed Olefin Metathesis. J. Am. Chem. Soc. 2015, 137, 2476–2479. DOI:10.1021/jacs.5b00151. (b) Ying, P.; Yu, J.; Su, W. Liquid-Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv. Synth. Catal. 2021, 363, 1246–1271. DOI:10 .1002/adsc.202001245.
  • Friscic, T.; Childs, S.L.; Rizvi, S.A.A.; Jones, W. The Role of Solvent in Mechanochemical and Sonochemical Cocrystal Formation: A Solubility-Based Approach for Predicting Cocrystallisation Outcome. CrystEngComm. 2009, 11, 418–426. DOI:10.1039/B815174A.
  • (a) Wu, S.; Shi, W.; Zou, G. Mechanical Metal Activation for Ni-Catalyzed, Mn-Mediated Cross-Electrophile Coupling Between Aryl and Alkyl Bromides. New J. Chem. 2021, 45, 11269–11274. DOI:10.1039/D1NJ01732B. (b) Jones, A.C.; Nicholson, W.I.; Leitch, J.A.; Browne, D.L. A Ball-Milling-Enabled Cross-Electrophile Coupling. Org. Lett. 2021, 16, 6337–6341. DOI:10 .1021/acs.orglett.1c02096.
  • Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and Techniques for Solvent Selection: Green Solvent Selection Guides. J. Sustain. Chem. Process. 2016, 4, 1–24. DOI:10.1186/s40508-016-0051-z.
  • Colon, I.; Kelsey, D.R.J. Coupling of Aryl Chlorides by Nickel and Reducing Metals. Org. Chem. 1986, 51, 2627–2637. DOI:10.1021/jo00364a002.
  • Haley, R.A.; Zellner, A.R.; Krause, J.A.; Guan, H.; Mack, J. Nickel Catalysis in a High Speed Ball Mill: A Recyclable Mechanochemical Method for Producing Substituted Cylooctatetraene Compounds. ACS Sustain. Chem. Eng. 2016, 4, 2464–2469. DOI:10.1021/acssuschemeng.6b00363.
  • Chen, H.; Fan, J.; Fu, Y.; Do-Thanh, C.; Suo, X.; Wang, T.; Popovs, I.; Jiang, D.; Yuan, Y.; Yang, Z.; Dai, S. Benzene Ring Knitting Achieved by Ambient-Temperature Dehalogenation via Mechanochemical Ullmann-Type Reductive Coupling. Adv. Mater. 2021, 33, 1–8. DOI:10.1002/adma.202008685.
  • (a) Tullberg, E.; Peters, D.; Frejd, T.J. The Heck Reaction Under Ball-Milling Conditions. Organomet. Chem. 2004, 689, 3778–3781. DOI:10.1016/j.jorganchem.2004.06.045. (b) Rana, S.; Varadwaj, G.B.B.; Jonnalagadda, S.B. Pd Nanoparticle Supported Reduced Graphene Oxide and Its Excellent Catalytic Activity for the Ullman C-C Coupling Reaction in a Green Solvent. RSC Adv. 2019, 9, 13332–13335. DOI:10 .1039/C9RA01715A.
  • Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and Further Expanding GSK’s Solvent Sustainability Guide. Green Chem. 2016, 18, 3879–3890. DOI:10.1039/C6GC00611F.
  • Millipore Sigma. Sigma Aldrich. http://sigmaaldrich.com/US/en/product/Aldrich/365858 (accessed Apr 24, 2022).
  • Jordan, A.; Hall, C.G.J.; Thorp, L.R.; Sneddon, H.F. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem. Rev. 2022, 122, 6749–6794. DOI:10.1021/acs.chemrev.1c00672.
  • Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; McElroy, C.R.; Sherwood, J. Tools and Techniques for Solvent Selection: Green Solvent Selection Guides. Sustain. Chem. Process. 2016, 4, 1–24. DOI:10.1186/s40508-016-0051-z.
  • Pyo, S.; Park, J.H.; Chang, T.; Hatti-Kaul, R. Dimethyl Carbonate as a Green Chemical. Curr. Opin.Green Sustain. Chem. 2017, 5, 61–66. DOI:10.1016/j.cogsc.2017.03.012.
  • (a) Anka-Lufford, L.L.; Huihui, K.M.M.; Gower, N.J.; Ackerman, L.K.G.; Weix, D.J. Nickel-Catalyzed Cross-Electrophile Coupling with Organic Reductants in Non-Amide Solvents. Chem. Eur. J. 2016, 22, 11564–11567. DOI:10.1002/chem.201602668. (b) Molander, G.A.; Wisniewski, S.R.; Traister, K.M. Reductive Cross-Coupling of 3-Bromo-2,1-borazaronaphthalenes with Alkyl Iodides. Org. Lett. 2014, 16, 3692–3695. DOI:10 .1021/ol501495d.
  • Andersen, J.M.; Mack, J. Decoupling the Arrhenius Equation via Mechanochemistry. Chem. Sci. 2017, 8, 5447–5453. DOI:10.1039/C7SC00538E.
  • Sherwood, J.; Parker, H.L.; Moonen, K.; Farmer, T.J.; Hunt, A.J. N-Butylpyrrolidinone as a Dipolar Aprotic Solvent for Organic Synthesis. Green Chem. 2016, 18, 3990–3996. DOI:10.1039/C6GC00932H.
  • Gerleve, C.; Studer, A. Transition-Metal-Free Oxidative Cross-Coupling of Tetraarylborates to Biaryls Using Organic Oxidants. Angew. Chem. Int. Ed. 2020, 59, 15468–15473. DOI:10.1002/anie.202002595.
  • Bortnikov, E.O.; Semenov, S.N. Coupling of Alternating Current to Transition-Metal Catalysis: Examples of Nickel-Catalyzed Cross-Coupling. J. Org. Chem. 2021, 86, 782–793. DOI:10.1021/acs.joc.0c02350.
  • Tran, H.; McCallum, T.; Morin, M.; Barriault, L. Homocoupling of Iodoarenes and Bromoalkanes Using Photoredox Gold Catalysis: A Light Enabled Au(III) Reductive Elimination. Org. Lett. 2016, 18, 4308–4311. DOI:10.1021/acs.orglett.6b02021.
  • Midya, S.P.; Subaramanian, M.; Babu, R.; Yadav, V.; Balaraman, E. Tandem Acceptorless Dehydrogenative Coupling-Decyanation Under Nickel Catalysis. J. Org. Chem. 2021, 86, 7552–7562. DOI:10.1021/acs.joc.1c00592.