2,410
Views
1
CrossRef citations to date
0
Altmetric
Research Letter

Putting the squeeze on imine synthesis: citrus juice as a reaction medium in the introductory organic laboratory

, , , ORCID Icon &
Article: 2185107 | Received 30 Nov 2022, Accepted 21 Feb 2023, Published online: 10 Mar 2023

References

  • Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill. https://www.nrdc.org/resources/wasted-how-america-losing-40-percent-its-food-farm-fork-landfill (accessed Nov 27, 2022).
  • The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; FAO, Ed.; Food and Agriculture Organization of the United Nations: Rome, 2019.
  • Food and Agriculture Organization of the United Nations. Sustainable Development Goals Target 12.3 https://www.fao.org/sustainable-development-goals/indicators/1231/en/ (accessed Nov 27, 2022).
  • Berkeley Economic Review. The Good, the Bad, and the Ugly Produce Movement https://econreview.berkeley.edu/the-good-the-bad-and-the-ugly-produce-movement/ (accessed Nov 27, 2022).
  • Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization: Fruit and Vegetable Waste. Compr. Rev. Food Sci. Food Saf. 2018, 17 (3), 512–531.
  • McCance, K.R.; Suarez, A.; McAlexander, S.L.; Davis, G.; Blanchard, M.R.; Venditti, R.A. Modeling a Biorefinery: Converting Pineapple Waste to Bioproducts and Biofuel. J. Chem. Educ. 2021, 98 (6), 2047–2054.
  • Mackenzie, L.S.; Tyrrell, H.; Thomas, R.; Matharu, A.S.; Clark, J.H.; Hurst, G.A. Valorization of Waste Orange Peel to Produce Shear-Thinning Gels. J. Chem. Educ. 2019, 96 (12), 3025–3029.
  • Mendes, D.E.; Schoffstall, A.M. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide–Alkyne Cycloaddition Reactions. J. Chem. Educ. 2011, 88 (11), 1582–1585.
  • Navarro, Y.; Soengas, R.; Iglesias, M.J.; Ortiz, F.L. Use of NMR for the Analysis and Quantification of the Sugar Composition in Fresh and Store-Bought Fruit Juices. J. Chem. Educ. 2020, 97 (3), 831–837.
  • Soares, C.; Correia, M.; Delerue-Matos, C.; Barroso, M.F. Investigating the Antioxidant Capacity of Fruits and Fruit Byproducts through an Introductory Food Chemistry Experiment for High School. J. Chem. Educ. 2017, 94 (9), 1291–1295.
  • Kurushkin, M.; Tracey, C.; Mikhaylenko, M. BYOL: Bring Your Own Lime Hands-On Laboratory Experience. J. Chem. Educ. 2019, 96 (6), 1283–1286.
  • Fahey, J.T.; Dineen, A.E.; Henain, J.M. Microwave-Assisted Aspirin Synthesis from Over-the-Counter Pain Creams Using Naturally Acidic Catalysts: A Green Undergraduate Organic Chemistry Laboratory Experiment. In ACS Symposium Series; Fahey, J. T., Maelia, L. E., Eds.; American Chemical Society: Washington, DC, 2016; pp 93–109.
  • Gulati, S.; Singh, R.; Sangwan, S. Fruit Juices Act as Biocatalysts in the Efficient Synthesis of Potentially Bioactive Imidazoles. Green Chem. Lett. Rev. 2022, 15 (1), 3–17.
  • Anjani, S.; Suprita, S.; Gulati, S.; Singh, R. Green and Environmentally Benign Organic Synthesis by Using Fruit Juice as Biocatalyst: A Review. Int. Res. J. Pure Appl. Chem. 2018, 16 (1), 1–15. https://doi.org/10.9734/IRJPAC/2018/40536.
  • Patil, S.; Jadhav, S.D.; Deshmukh, M.B.; Patil, U.P. Natural Acid Catalyzed Synthesis of Schiff under Solvent-Free Condition: As a Green Approach. Int. J. Org. Chem. 2012, 2, 166–171.
  • McMurry, J. Organic Chemistry; Brooks/Cole: Boston, MA, 2016. pp. 619-624
  • Iqbal, A.; Siddiqui, H.L.; Ashraf, C.M.; Bukhari, M.H.; Akram, C.M. Synthesis, Spectroscopic and Cytotoxic Studies of Biologically Active New Schiff Bases Derived from p-Nitrobenzaldehyde. Chem. Pharm. Bull. 2007, 55 (7), 1070–1072. https://doi.org/10.1248/cpb.55.1070.
  • da Silva, C.M.; da Silva, D.L.; Modolo, L.V.; Alves, R.B.; de Resende, M.A.; Martins, C.V.B. Schiff Bases: A Short Review of Their Antimicrobial Activities. J. Adv. Res. 2011, 2 (1), 1–8.
  • Suresh, R.; Kamalakkannan, D.; Ranganathan, K.; Arulkumaran, R.; Sundararajan, R.; Sakthinathan, S.P.; Vijayakumar, S.; Sathiyamoorthi, K.; Mala, V., Vanangamudi, G., et al. Solvent-Free Synthesis, Spectral Correlations and Antimicrobial Activities of Some Aryl Imines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 101, 239–248.
  • Bennett, J.; Meldi, K.; Kimmell, C. Synthesis and Analysis of a Versatile Imine for the Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2006, 83 (8), 1221–1224.
  • Silverberg, L.J.; Coyle, D.J.; Cannon, K.C.; Mathers, R.T.; Richards, J.A.; Tierney, J. Azeotropic Preparation of a C -Phenyl N -Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment. J. Chem. Educ. 2016, 93 (5), 941–944.
  • Mancheño, M.J.; Royuela, S.; de la Peña, A.; Ramos, M.; Zamora, F.; Segura, J.L. Introduction to Covalent Organic Frameworks: An Advanced Organic Chemistry Experiment. J. Chem. Educ. 2019, 96 (8), 1745–1751.
  • Popova, M.; Bretz, S.L.; Hartley, C.S. Visualizing Molecular Chirality in the Organic Chemistry Laboratory Using Cholesteric Liquid Crystals. J. Chem. Educ. 2016, 93 (6), 1096–1099.
  • Go, E.B.; Srisuknimit, V.; Cheng, S.L.; Vosburg, D.A. Guest Capture, and NMR Spectroscopy of a Metal–Organic Cage in Water. J. Chem. Educ. 2016, 93 (2), 368–371.
  • Clarke, C.J.; Tu, W.-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev 2018, 118 (2), 747–800.
  • Saggiomo, V.; Lüning, U. On the Formation of Imines in Water – A Comparison. Tetrahedron Lett. 2009, 50 (32), 4663–4665.
  • Bennett, J.S.; Charles, K.L.; Miner, M.R.; Heuberger, C.F.; Spina, E.J.; Bartels, M.F.; Foreman, T. Ethyl Lactate as a Tunable Solvent for the Synthesis of Aryl Aldimines. Green Chem. 2009, 11 (2), 166–168.
  • Patil, R.D.; Adimurthy, S. Catalytic Methods for Imine Synthesis. Asian J. Org. Chem. 2013, 2 (9), 726–744.
  • Chakraborti, A.K.; Bhagat, S.; Rudrawar, S. Magnesium Perchlorate as an Efficient Catalyst for the Synthesis of Imines and Phenylhydrazones. Tetrahedron Lett. 2004, 45 (41), 7641–7644.
  • Stacey, J.M.; Dicks, A.P.; Goodwin, A.A.; Rush, B.M.; Nigam, M. Green Carbonyl Condensation Reactions Demonstrating Solvent and Organocatalyst Recyclability. J. Chem. Educ. 2013, 90 (8), 1067–1070.
  • Carlson, M.W.; Ciszewski, J.T.; Bhatti, M.M.; Swanson, W.F.; Wilson, A.M. A Simple Secondary Amine Synthesis: Reductive Amination Using Sodium Triacetoxyborohydride. J. Chem. Educ. 2000, 77 (2), 270–271.
  • Touchette, K.M. Reductive Amination: A Remarkable Experiment for the Organic Laboratory. J. Chem. Educ. 2006, 83 (6), 929–930.
  • Goldstein, S.W.; Cross, A.V. Solvent-Free Reductive Amination: An Organic Chemistry Experiment. J. Chem. Educ. 2015, 92 (7), 1214–1216.
  • Sinclair, W.B.; Eny, D.M. The Organic Acids of Lemon Fruits. Botan. Gaz. 1945, 107 (2), 231–242.
  • Zarei, M.; Mohamadzadeh, M. 3-Thiolated 2-Azetidinones: Synthesis and in Vitro Antibacterial and Antifungal Activities. Tetrahedron 2011, 67 (32), 5832–5840.
  • Galván, A.; de la Cruz, F.N.; Cruz, F.; Martínez, M.; Gomez, C.V.; Alcaraz, Y.; Domínguez, J.M.; Delgado, F.; Vázquez, M.A. Heterogeneous Catalysis with Basic Compounds to Achieve the Synthesis and C–N Cleavage of Azetidin-2-Ones under Microwave Irradiation. Synthesis 2019, 51 (19), 3625–3637.
  • Jiang, Q.; Wang, J.-Y.; Guo, C. Iodine (III)-Mediated C–H Alkoxylation of Aniline Derivatives with Alcohols under Metal-Free Conditions. J. Org. Chem. 2014, 79 (18), 8768–8773.
  • Ballistreri, F.P.; Maccarone, E.; Mamo, A. Kinetics and Mechanism of Benzylation of Anilines. J. Org. Chem. 1976, 41 (21), 3364–3367.
  • Gupta, P.; Kour, M.; Paul, S.; Clark, J.H. Ionic Liquid Coated Sulfonated Carbon/Silica Composites: Novel Heterogeneous Catalysts for Organic Syntheses in Water. RSC Adv. 2014, 4 (15), 7461–7470. https://doi.org/10.1039/c3ra45229h.
  • Itoh, T.; Nagata, K.; Miyazaki, M.; Ishikawa, H.; Kurihara, A.; Ohsawa, A. A Selective Reductive Amination of Aldehydes by the Use of Hantzsch Dihydropyridines as Reductant. Tetrahedron 2004, 60 (31), 6649–6655.
  • Goldmann, M.E. The pH of Fruit Juices. J. Food Sci. 1949, 14 (4), 275–277.
  • Shaghafi, M.B.; Grote, R.E.; Jarvo, E.R. Oxazolidine Synthesis by Complementary Stereospecific and Stereoconvergent Methods. Org. Lett. 2011, 13 (19), 5188–5191.
  • Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, 1998.