1,462
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Valeriana jatamansi root extract a potent source for biosynthesis of silver nanoparticles and their biomedical applications, and photocatalytic decomposition

, , ORCID Icon, , , , , , , , , & show all

References

  • Morris, S.; Cerceo, E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics 2020, 9, 196.
  • Bezza, F.A.; Tichapondwa, S.M.; Chirwa, E.M. Synthesis of Biosurfactant Stabilized Silver Nanoparticles, Characterization and Their Potential Application for Bactericidal Purposes. J. Haz. Mater. 2020, 393, 122319.
  • Otto, M. Staphylococcus aureus Toxins. Curr. Opin. Microbiol. 2014, 17, 32–37.
  • Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140.
  • Taylor, T.A.; Unakal, C.G. Staphylococcus aureus Infection; Stat Pearls, 2022, 28722898.
  • Cheung, G.Y.C.; Bae, J.; Otto, M. Pathogenicity and Virulence of Staphylococcus aureus. Virulence. 2021, 12, 547–569.
  • Zecconi, A.; Scali, F. Staphylococcus aureus Virulence Factors in Evasion from Innate Immune Defences in Human and Animal Diseases. Immunol. Lett. 2013, 150, 12–22.
  • Lowy, F.D. Staphylococcus aureus Infections. N. Engl. J. Med. 1998, 339, 520–532.
  • Chambers, H.F.; Deleo, F.R. Waves of Resistance: Staphylococcus aureus in the Antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641.
  • Alm, E. W.; Walk, S. T.; Gordon, D. M., The Niche of Escherichia coli. In S. T. Walk & P. C. H. Feng (Eds.), the Niche of Escherichia coli (Chapter 6). ASM Press 2011, 67–69.
  • Fijan, S. Microorganisms With Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767.
  • Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922.
  • Lim, J.Y.; Yoon, J.; Hovde, C.J.A. A Brief Overview of Escherichia coli O157:H7 and its Plasmid O157. J. Microbiol. Biotechnol. 2015, 20, 5–14.
  • Lee, D.S.; Lee, S.J.; Choe, H.S. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. Biomed Res. Int. 2018, 7656752.
  • GBD. Diseases and Injuries Collaborators Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2019, 396, 1204–1222.
  • Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; Aali, A. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study. Lancet 2019, 400, 2221–2248.
  • Murray, C.J.L. The Global Burden of Disease Study at 30 Years. Nat. Med. 2022, 28, 2019–2026.
  • Peralta, G.; Sanchez, M.B.; Garrido, J.C.; De Benito, I.; Cano, ME;; Martínez-Martínez, L.; Roiz, M.P. Impact of Antibiotic Resistance and of Adequate Empirical Antibiotic Treatment in the Prognosis of Patients with Escherichia coli Bacteraemia. J. Antimicrob. Chemo. 2007, 60, 855–863.
  • Elshimy, R. Escherichia coli (E. coli) Resistance Against Last Resort Antibiotics and Novel Approaches to Combat Antibiotic Resistance. Intech Open 2023.
  • Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The Global Preclinical Antibacterial Pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285.
  • Petersen, P.E.; Bourgeois, D.; Ogawa, H.; Estupinan-Day, S.; Ndiaye, C. The Global Burden of Oral Diseases and Risks to Oral Health. Bull. World Health Organiz. 2005, 83, 661–669.
  • Casamassimo, P.S.; Thikkurissy, S.; Edelstein, B.L.; Maiorini, E. Beyond the Dmft: The Human and Economic Cost of Early Childhood Caries. J. Amer. Dent. Assoc. 2009, 140, 650–657.
  • Kumarasamy, B.; Manipal, S.; Duraisamy, P.; Ahmed, A.; Mohanaganesh, S.; Jeevika, C. Role of Aqueous Extract of Morinda Citrifolia (Indian Noni) Ripe Fruits in Inhibiting Dental Caries-Causing Streptococcus Mutans and Streptococcus Miti. J. Dent. 2014, 11, 703–710.
  • Bagramian, R.A.; Garcia-Godoy, F.; Volpe, A.R. The Global Increase in Dental Caries. A Pending Public Health Crisis. Am. J. Dent. 2009, 22, 3–8.
  • Bernabe, E.; Marcenes, W. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J. Dent. Res. 2020, 99, 362–373.
  • Marsh, P.D. Dental Plaque as a Microbial Biofilm. Caries Res. 2004, 38, 204–11.
  • Peres, M.A.; Macpherson, L.M.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Watt, R.G. Oral Diseases: A Global Public Health Challenge. Lancet 2019, 394, 249–260.
  • Dhiman, B.; Sharma, P.; Pal, P.K. Biology, Chemical Diversity, Agronomy, Conservation and Industrial Importance of Valeriana jatamansi: A Natural Sedative. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100243.
  • Jugran, A.K.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Valeriana jatamansi: An Herbaceous Plant with Multiple Medicinal Uses. Phytother. Res. 2019, 33, 482–503.
  • Lin, S.; Shen, Y.H.; Li, H.L.; Yang, X.W.; Chen, T.; Lu, L.H.; Huang, Z.Z. Acylated Iridoids with Cytotoxicity from Valeriana jatamansi. J. Nat. Prod. 2009, 72, 650–655.
  • Raina, A.P.; Negi, K.S. Essential oil Composition of Valeriana jatamansi Jones from Himalayan Regions of India. Indian J. Pharm. Sci. 2015, 77, 218.
  • Mathela, C.C.; Chanotiya, C.C.; Sammal, S.S.; Pant, A.K.; Pandey, S. Compositional Diversity of Terpenoids in the Himalayan Valeriana Genera. Chem. Biodivers. 2005, 2, 1174–1182.
  • Yang, B.; Zhu, R.; Tian, S.; Wang, Y.; Lou, S.; Zhao, H. Jatamanvaltrate P Induces Cell Cycle Arrest, Apoptosis, and Autophagy in Human Breast Cancer Cells in Vitro and in Vivo. Biomed. Pharmacothe.r 2017, 89, 1027–1036.
  • Subhan, F.; Karim, N.; Ibrar, M. Anti-inflammatory Activity of Methanolic and Aqueous Extracts of Valeriana Wallichii DC Rhizome. Pak. J. Pl. Sci. 2007, 13, 103–108.
  • Li, J.; Li, X.; Wang, C.; Zhang, M.; Ye, M.; Wang, Q. The Potential of Valeriana as a Traditional Chinese Medicine: Traditional Clinical Applications, Bioactivities, and Phytochemistry. Front. Pharmacol. 2022, 13, 973138.
  • Kamaraj, C.; Ragavendran, C.; Manimaran, K.; Sarvesh, S.; Islam, A.R.; Malafaia, G. Green Synthesis of Silver Nanoparticles from Cassia Auriculata: Targeting Antibacterial, Antioxidant Activity, and Evaluation of Their Possible Effects on Saltwater Microcrustacean, Artemia Nauplii (non-Target Organism). Sci. Tot. Environ. 2023, 861, 160575.
  • Srivastava, S.; Bhargava, A.; Srivastava, S.; Bhargava, A. Nanobiotechnology: Present Status and Future Prospects. In Green Nanoparticles. Fut. Nanobiotechnol. 2022, 345–352.
  • Kingsley, J.D.; Ranjan, S.; Dasgupta, N.; Saha, P. Nanotechnology for Tissue Engineering: Need, Techniques and Applications. J. Pharm. Res. 2013, 7, 200–204.
  • Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological Synthesis of Metallic Nanoparticles. Nanomedicine 2010, 6, 257–262.
  • Jeevanandam, J.; Krishnan, S.; Hii, Y.S.; Pan, S.; Chan, Y.S.; Acquah, C.; Danquah, M.K.; Rodrigues, J. Synthesis Approach-Dependent Antiviral Properties of Silver Nanoparticles and Nanocomposites. J. Nanostruct. Chem. 2022, 1–23.
  • Naveenkumar, S.; Kamaraj, C.; Ragavendran, C.; Vaithiyalingam, M.; Vimal, S.; Marimuthu, K. Gracilaria Corticata Red Seaweed Mediate Biosynthesis of Silver Nanoparticles: Larvicidal, Neurotoxicity, Molecular Docking Analysis and eco-Friendly Approach. Biomass Convers. Biorefinery 2023, 1–23.
  • Ragavendran, C.; Kamaraj, C.; Jothimani, K.; Priyadharsan, A.; Kumar, D.A.; Natarajan, D.; Malafaia, G. Eco-friendly Approach for ZnO Nanoparticles Synthesis and Evaluation of its Possible Antimicrobial, Larvicidal and Photocatalytic Applications. Sustain. Mater. Technol. 2023, 36, 00597.
  • Das, C.; Paul, S.S.; Saha, A.; Singh, T.; Saha, A.; Im, J.; Biswas, G. Silver-Based Nanomaterials as Therapeutic Agents Against Coronaviruses: A Review. Int. J. Nanomed. 2020, 15, 9301–9315.
  • Hussain, F.S.; Abro, N.Q.; Ahmed, N.; Memon, S.Q.; Memon, N. Nano-antivirals: A Comprehensive Review. Front. Nanotechnol. 2020, 4, 1064615.
  • Kamaraj, C.; Ragavendran, C.; Satish Kumar, R.C.; Sarvesh, S.; Vetrivel, C.; Vaithiyalingam, M.; Malafaia, G. Synthesize Palladium Nanoparticles from the Macroalgae Sargassum Fusiforme: An eco-Friendly Tool in the Fight Against Plasmodium Falciparum. Sci. Tot. Environ. 2023, 857, 159517.
  • Kamaraj, C.; Gandhi, P.R.; Satish Kumar, R.; Balasubramani, G.; Malafaia, G. Biosynthesis and Extrinsic Toxicity of Copper Oxide Nanoparticles Against Cattle Parasites: An Eco-Friendly Approach. Envi. Res 2022, 214, 114009.
  • Kamaraj, C.; Karthi, S.; Reegan, A.D.; Balasubramani, G.; Ramkumar, G.; Kalaivani, K.; Zahir, A.A.; Deepak, P.; Senthil-Nathan, S.; Rahman, M.M.; Islam, A.R.M.T. Green Synthesis of Gold Nanoparticles Using Gracilaria Crassa Leaf Extract and Their Ecotoxicological Potential: Issues to be Considered. Env. Res. 2022, 213, 113711.
  • Rai, M.; Kon, K.; Ingle, A.; Duran, N.; Galdiero, S.; Galdiero, M. Broad-spectrum Bioactivities of Silver Nanoparticles: The Emerging Trends and Future Prospects. Appl. Microbiol. Biotechnol. 2014, 98, 1951–1961.
  • Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534.
  • Wong, K.K.; Liu, X. Silver Nanoparticles—the Real “Silver Bullet” in Clinical Medicine. Med. Chem. Commun. 2010, 1, 125–131.
  • Sahoo, S.K.; Parveen, S.; Panda, J.J. The Present and Future of Nanotechnology in Human Health Care. Nanomedicine 2007, 3, 20–31.
  • Prabhu, S.; Poulose, E.K. Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. Int. Nano Lett. 2010, 2, 1–10.
  • Jasni, A.H.; Ali, A.A.; Sagadevan, S.; Wahid, Z. Silver Nanoparticles in Various New Applications. In Nanoparticles Technology. Intech Open 2021, 1–18.
  • Rani, P.; Kumar, V.; Singh, P.P.; Matharu, A.S.; Zhang, W.; Kim, K.H.; Singh, J.; Rawat, M. Highly Stable AgNPs Prepared via a Novel Green Approach for Catalytic and Photocatalytic Removal of Biological and non-Biological Pollutants. Environ. Intern. 2020, 143, 105924.
  • Kareem, M.A.; Bello, I.T.; Shittu, H.A.; Awodele, M.K.; Adedokun, O.; Sanusi, Y.K. Green Synthesis of Silver Nanoparticles (AgNPs) for Optical and Photocatalytic Applications: A Review. In IOP Conference Series. Mater. Sci. Eng. 2020, 80, 012020.
  • Dua, T.K.; Giri, S.; Nandi, G.; Sahu, R.; Shaw, T.K.; Paul, P. Green Synthesis of Silver Nanoparticles Using Eupatorium Adenophorum Leaf Extract: Characterizations, Antioxidant, Antibacterial and Photocatalytic Activities. Chem. Pap. 2023, 1–10.
  • Ghatage, M.M.; Mane, P.A.; Gambhir, R.P.; Parkhe, V.S.; Kamble, P.A.; Lokhande, C.D.; Tiwari, A.P. Green Synthesis of Silver Nanoparticles via Aloe Barbadensis Miller Leaves: Anticancer, Antioxidative, Antimicrobial and Photocatalytic Properties. Appl. Surf. Sci. Adv. 2023, 16, 100426.
  • Huston, M.; DeBella, M.; DiBella, M.; Gupta, A. Green Synthesis of Nanomaterials. Nanomaterials 2021, 11, 2130.
  • Ramya, M.; Subapriya, M.S. Green Synthesis of Silver Nanoparticles. Int. J. Pharm. Med. Biol. Sci. 2012, 1, 54–61.
  • Lopez-Chaves, C.; Soto-Alvaredo, J.; Montes-Bayon, M.; Bettmer, J.; Llopis, J.; Sanchez-Gonzalez, C. Gold Nanoparticles: Distribution, Bioaccumulation and Toxicity. In Vitro and in Vivo Studies. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1–12.
  • Vilas, V.; Philip, D.; Mathew, J. Catalytically and Biologically Active Silver Nanoparticles Synthesized Using Essential oil, Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 132, 743–750.
  • Sondi, I.; Salopek-Sondi, B. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-Negative Bacteria. J. Colloid Interface Sci. 2004, 275, 177–182.
  • Sotiriou, G.A.; Pratsinis, S.E. Antibacterial Activity of Nanosilver Ions and Particles. Environ. Sci. Technol. 2010, 14, 5649–5654.
  • Prabakaran, L.; Sathyaraj, W.V.; Yesudhason, B.V.; Subbaraj, G.K.; Atchudan, R. Green Synthesis of Multifunctional Silver Nanoparticles Using Plectranthus Amboinicus for Sensitive Detection of Triethylamine, with Potential In Vitro Antibacterial and Anticancer Activities. Chemosensors 2023, 11, 373.
  • Karnjana, K.; Jewboonchu, J.; Niyomtham, N.; Tangngamsakul, P.; Bunluepuech, K.; Goodla, L.; Mordmuang, A. The Potency of Herbal Extracts and its Green Synthesized Nanoparticle Formulation as Antibacterial Agents Against Streptococcus Mutans Associated Biofilms. Biotechnol. Rep. 2023, 37.
  • Mulvaney, P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12, 788–800.
  • Basumatari, M.; Devi, R.R.; Gupta, M.K.; Gupta, S.K.; Raul, P.K.; Chatterjee, S.; Dwivedi, S.K.; Musa balbisianai. Colla Pseudostem Biowaste Mediated Zinc Oxide Nanoparticles: Their Antibiofilm and Antibacterial Potentiality. Curr. Res. Green Sustain. Chem 2021, 4, 100048.
  • Dua, T.K.; Giri, S.; Nandi, G. Green Synthesis of Silver Nanoparticles Using Eupatorium Adenophorum Leaf Extract: Characterizations, Antioxidant, Antibacterial and Photocatalytic Activities. Chem. Pap. 2023, 77, 2947–2956.
  • Reddy, N.V.; Li, H.; Hou, T.; Bethu, M.S.; Ren, Z.; Zhang, Z. Phytosynthesis of Silver Nanoparticles Using Perilla Frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities. Int. J. Nanomed. 2021, 16, 15.
  • Padmavathy, K.; Sivakumari, K.; Rajesh, S. Exploring Squalene and Rhodoxanthin from Hylocereus Undatus as a Therapeutic Agent for the Treatment of Human Liver Cancer Using Docking Analysis. Chettinad Health City Med. J. 2022, 11, 24–32.
  • Kelutur, F.J.; Saptarini, N.M.; Mustarichie, R.; Kurnia, D. Molecular Docking of the Terpenes in Gorgonian Corals to COX-2 and iNOS Enzymes as Anti-Inflammatory. Lett. Drug Des. Discov. 2022, 19, 706–721.
  • Shahab, S.; Kaviani, S.; Sheikhi, M.; Alhosseini Almodarresiyeh, H.; Al Saud, S. Dft Calculations and in Silico Study of Chlorogenic, Ellagic and Quisqualic Acids as Potential Inhibitors of SARS-CoV-2 Main Protease. Mpro 2022.
  • Moulishankar, A.; Lakshmanan, K. Data on Molecular Docking of Naturally Occurring Flavonoids with Biologically Important Targets. Data. Brief. 2020, 29, 105243.
  • Garg, A.; Tadesse, A.; Eswaramoorthy, R. A Four-Component Domino Reaction: An eco-Compatible and Highly Efficient Construction of 1, 8-Naphthyridine Derivatives, There in Silico Molecular Docking, Drug Likeness, ADME, and Toxicity Studies. J. Chem. 2021, 1–16.
  • Chen, X.; Li, H.; Tian, L.; Li, Q.; Luo, J.; Zhang, Y. Analysis of the Physicochemical Properties of Acaricides Based on Lipinski's Rule of Five. J. Comput. Biol. 2020, 27, 1397–1406.
  • Taghizadeh, M.S.; Niazi, A.; Moghadam, A.; Afsharifar, A. Experimental, Molecular Docking and Molecular Dynamic Studies of Natural Products Targeting Overexpressed Receptors in Breast Cancer. PLoS One 2022, 17.
  • Rivera-Quiroga, R.E.; Cardona, N.; Padilla, L.; Rivera, W.; Rocha-Roa, C.; Diaz De Rienzo, M.A.; Martinez, M.C. In Silico Selection and in Vitro Evaluation of new Molecules That Inhibit the Adhesion of Streptococcus Mutans Through Antigen I/II. Int. J. Mol. Sci. 2020, 22, 377.
  • Babaeekhou, L.; Ghane, M. Antimicrobial Activity of Ginger on Cariogenic Bacteria: Molecular Networking and Molecular Docking Analyses. J. Biomol. Struct. Dyn 2021, 39, 2164–2175.
  • Bhat, S.K.; Purushothaman, K.; Kini, K.R.; Appu Rao, G.R. Design of Mutants of GH11 Xylanase from Bacillus Pumilus for Enhanced Stability by Amino Acid Substitutions in the N-Terminal Region: An in-Silico Analysis. J. Biomol. Struct. Dyn. 2020, 40, 7666–7679.
  • El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and AutoDockTools for Protein-Ligand Docking: Beta-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) as a Case Study. Neuroproteom. Meth. Protoc. 2017, 391–403.
  • Iqbal, M.; Bawazeer, S.; Bakht, J.; Rauf, A.; Shah, M.; Khalil, A.; El-Esawi, M. Green Synthesis of Silver Nanoparticles from Valeriana jatamansi Shoots Extract and its Antimicrobial Activity. Green Process. Synth. 2017, 9, 715–721.
  • Maghsoudy, N.; Azar, P.A.; Tehrani, M.S.; Husain, S.W.; Larijani, K. Biosynthesis of Ag and Fe Nanoparticles Using Erodium Cicutarium; Study, Optimization, and Modeling of the Antibacterial Properties Using Response Surface Methodology. Journal of Nanostructure in Chemistry 2019, 9, 203–216.
  • Bharathi, D.; Josebin, M.D.; Vasantharaj, S.; Bhuvaneshwari, V. Biosynthesis of Silver Nanoparticles Using Stem Bark Extracts of Diospyros Montana and Their Antioxidant and Antibacterial Activities. J Nanostruct Chem. 2018, 8, 83–92.
  • Sreekanth, T.V.M.; Ravikumar, S.; Eom, I.Y. Green Synthesized Silver Nanoparticles Using Nelumbo Nucifera Root Extract for Efficient Protein Binding, Antioxidant and Cytotoxicity Activities. J. Photochem. Photobiol. B Biol. 2014, 141, 100–105.
  • Umoren, S.A.; Obot, I.B.; Gasem, Z.M. Green Synthesis and Characterization of Silver Nanoparticles Using red Apple (Malus Domestica) Fruit Extract at Room Temperature. J. Mater. Environ. Sci. 2014, 5, 907–914.
  • Dharshini, R.S.; Poonkothai, M.; Srinivasan, P.; Mythili, R.; Syed, A.; Elgorban, A.M.; Selvankumar, T.; Kim, W. Nano-decolorization of Methylene Blue by Phyllanthus Reticulatus Iron Nanoparticles: An eco-Friendly Synthesis and its Antimicrobial, Phytotoxicity Study. Appl. Nanosci. 2021, 1–11.
  • Rajeshkumar, S. Citrus Lemon Juice Mediated Preparation of AgNPs/Chitosan-Based Bionanocomposites and its Antimicrobial and Antioxidant Activity. J. Nanomater. 2021, 1–10.
  • Shejawal, K.P.; Randive, D.S.; Bhinge, S.D.; Bhutkar, M.A.; Wadkar, G.H.; Jadhav, N.R. Green Synthesis of Silver and Iron Nanoparticles of Isolated Proanthocyanidin: Its Characterization, Antioxidant, Antimicrobial, and Cytotoxic Activities Against COLO320DM and HT29. J. Genetic Eng. Biotechnol. 2020, 18, 1–11.
  • Razack, S.A.; Suresh, A.; Sriram, S.; Ramakrishnan, G.; Sadanandham, S.; Veerasamy, M.; Nagalamadaka, R.B.; Sahadevan, R. Green Synthesis of Iron Oxide Nanoparticles Using Hibiscus Rosa-Sinensis for Fortifying Wheat Biscuits. SN Appl. Sci. 2020, 2, 1–9.
  • Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Green Synthesis of Silver Nanoparticles Using Carob Leaf Extract and its Antibacterial Activity. Intern. J. Industr. Chem. 2013, 4, 1–6.
  • Khan, M.; Ware, P.; Shimpi, N. Synthesis of ZnO Nanoparticles Using Peels of Passiflora Foetida and Study of its Activity as an Efficient Catalyst for the Degradation of Hazardous Organic dye. SN App. Sci. 2021, 3, 1–17.
  • Sharma, A.; Sagar, A.; Rana, J.; Rani, R. Green Synthesis of Silver Nanoparticles and its Antibacterial Activity Using Fungus Talaromyces Purpureogenus Isolated from Taxus Baccata Linn. Micro Nano Syst. Lett. 2022, 10, 2.
  • Prodan, A.M.; Iconaru, S.L.; Chifiriuc, C.M.; Bleotu, C.; Ciobanu, C.S.; Motelica-Heino, M.; Sizaret, S.; Predoi, D. Magnetic Properties and Biological Activity Evaluation of Iron Oxide Nanoparticles. J. Nanomater. 2013.
  • Reddy, N.V.; Satyanarayana, B.M.; Sivasankar, S.; Pragathi, D.; Subbaiah, K.V.; Vijaya, T. Eco-friendly Synthesis of Silver Nanoparticles Using Leaf Extract of Flemingia Wightiana: Spectral Characterization, Antioxidant and Anticancer Activity Studies. SN Appl. Sci. 2020, 2, 1–10.
  • Arumugam, N.; Thulasinathan, B.; Pasubathi, R.; Thangavel, K.; Muthuramalingam, J.B.; Arunachalam, A. Biogenesis of Silver Nanoparticles Using Selected Plant Leaf Extract; Characterization and Comparative Analysis of Their Antimicrobial Activity. Nanomed. J. 2017, 4.
  • Rajivgandhi, G.N.; Chackaravarthi, G.; Ramachandran, G.; Manoharan, N.; Ragunathan, R.; Siddiqi, M.Z.; Alharbi, N.S.; Khaled, J.M.; Li, W.J. Synthesis of Silver Nanoparticle (Ag NPs) Using Phytochemical Rich Medicinal Plant Lonicera Japonica for Improve the Cytotoxicity Effect in Cancer Cells. J. King Saud Univ. Sci. 2022, 34, 101798.
  • Linima, V.K.; Ragunathan, R.; Johney, J. Biogenic Synthesis of Ricinus Communis Mediated Iron and Silver Nanoparticles and its Antibacterial and Antifungal Activity. Heliyon 2023, 9.
  • Mat Khalir, W.; Shameli, W.K.A.; Jazayeri, K.; Othman, S.D.; Che Jusoh, N.A.; Hassan, N.W.; M, N. Biosynthesized Silver Nanoparticles by Aqueous Stem Extract of Entada Spiralis and Screening of Their Biomedical Activity. Front. Chem. 2020, 8, 620.
  • Wypij, M.; Jędrzejewski, T.; Trzcińska-Wencel, J.; Ostrowski, M.; Rai, M.; Golińska, P. Green Synthesized Silver Nanoparticles: Antibacterial and Anticancer Activities, Biocompatibility, and Analyses of Surface-Attached Proteins. Front. Microbiol. 2021, 12, 632505.
  • Auría-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V.; Gongora, R.; Almendral Parra, M.J.; Manzano-Roman, R.; Fuentes, M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. Nanomaterials 2019, 9, 1365.
  • Baalousha, M.; Lead, J. R., Characterization of Natural Aquatic Colloids (<5 nm) by Flow-Field Flow Fractionation and Atomic Force Microscopy. Environ. Sci. Technol. 2007, 41, 1111.
  • Domingos, R.F.; Baalousha, M.A.; Ju-Nam, Y.; Reid, M.; Tufenkji, N.; Lead, J.R.; Leppard, G.G.; Wilkinson, K.J. Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes. Environ. Sci. Technol. 2009, 43, 7277–7284.
  • Thakur, P.; Sharma, Y.P.; Bhardwaj, C. Phyto-chemical Variation in Gynodioecious Valeriana jatamansi Jones. J. Pharm. Phytochem. 2019, 8, 1576–1582.
  • Liu, X.C.; Zhou, L.; Liu, Z.L. Identification of Insecticidal Constituents from the Essential oil of Valeriana jatamansi Jones Against Liposcelis Bostrychophila Badonnel. J. Chem. 2013, 853912.
  • Bhatt, I.D.; Dauthal, P.; Rawat, S.; Gaira, K.S.; Jugran, A.; Rawal, R.S.; Dhar, U. Characterization of Essential oil Composition, Phenolic Content, and Antioxidant Properties in Wild and Planted Individuals of Valeriana jatamansi Jones. Sci. Horticul. 2012, 136, 61–68.
  • Shukla, V.; Singh, P.; Konwar, R.; Singh, B.; Kumar, B. Phytochemical Analysis of High Value Medicinal Plant Valeriana jatamansi Using LC-MS and It's in-Vitro Anti-Proliferative Screening. Phytomed. Plus 2021, 1, 100025.
  • Urnukhsaikhan, E.; Bold, B.E.; Gunbileg, A.; Sukhbaatar, N.; Mishig-Ochir, T. Antibacterial Activity and Characteristics of Silver Nanoparticles Biosynthesized from Carduus Crispus. Sci. Rep. 2021, 11, 21047.
  • Perumal, S.; Atchudan, R.; Ramalingam, S.; Edison, T.N.J.I.; Lee, H.M.; Cheong, I.W.; Lee, Y.R. Comparative Investigation on Antibacterial Studies of Oxalis Corniculata and Silver Nanoparticle Stabilized Graphene Surface. J. Mater. Sci. 2022, 57, 11630–11648.
  • Linklater, D.P.; Baulin, V.A.; Le Guével, X.; Fleury, J.B.; Hanssen, E.; Nguyen, T.H.P.; Juodkazis, S.; Bryant, G.; Crawford, R.J.; Stoodley, P.; Ivanova, E.P. Antibacterial Action of Nanoparticles by Lethal Stretching of Bacterial Cell Membranes. Adv. Mater. 2020, 32, 2005679.
  • Ahmed, R.H.; Mustafa, D.E. Green Synthesis of Silver Nanoparticles Mediated by Traditionally Used Medicinal Plants in Sudan. Int. Nano Lett. 2020, 10, 1–14.
  • Khan, M.I.; Behera, S.K.; Paul, P.; Das, B.; Suar, M.; Jayabalan, R.; Fawcett, D.; Poinern, G.E.J.; Tripathy, S.K.; Mishra, A. Biogenic Au@ ZnO Core–Shell Nanocomposites Kill Staphylococcus aureus Without Provoking Nuclear Damage and Cytotoxicity in Mouse Fibroblasts Cells Under Hyperglycemic Condition with Enhanced Wound Healing Proficiency. Med. Microbiol. Immunol. 2019, 208, 609–629.
  • Fatih, E.R.C.I.; Torlak, E. Antimicrobial and Antibiofilm Activity of Green Synthesized Silver Nanoparticles by Using Aqueous Leaf Extract of Thymus Serpyllum. Sakarya Univ. J. Sci. 2019, 23, 333–339.
  • Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S.S. Effect of Various Capping Agents on Photocatalytic, Antibacterial and Antibiofilm Activities of ZnO Nanoparticles. J. Photochem. Photobiol B Biol. 2016, 160, 32–42.
  • Abishad, P.; Vergis, J.; Unni, V.; Ram, V.P.; Niveditha, P.; Yasur, J.; Juliet, S.; John, L.; Byrappa, K.; Nambiar, P.; Kurkure, N.V. Green Synthesized Silver Nanoparticles Using Lactobacillus Acidophilus as an Antioxidant, Antimicrobial, and Antibiofilm Agent Against Multi-Drug Resistant Enter Aggregative Escherichia coli. Probio. Antimicro. Prot 2022, 14, 904–914.
  • Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green Synthesis of Silver Nanoparticles Using Plant Extracts and Their Antimicrobial Activities: A Review of Recent Literature. RSC Adv. 2021, 11, 2804–2837.
  • Kalim, M.D.; Bhattacharya, D.; Banerjee, A.; Chattopadhyay, S. Oxidative DNA Damage Preventive Activity and Antioxidant Potential of Plants Used in Unani System of Medicine. BMC Compl. Altern. Med. 2010, 10, 1–11.
  • Thusoo, S.; Gupta, S.; Sudan, R.; Kour, J.; Bhagat, S.; Hussain, R.; Bhagat, M., Antioxidant Activity of Essential oil and Extracts of Valeriana jatamansi Roots. Biomed. Res. Int. 2014, 614187.
  • Pandian, D.S.; Nagarajan, N.S. Comparison of Chemical Composition and Antioxidant Potential of Hydrodistilled oil and Supercritical Fluid CO2 Extract of Valeriana Wallichi DC. J. Nat. Prod. Res. 2015, 1, 25–30.
  • Jugran, A.K.; Bahukhandi, A.; Dhyani, P.; Bhatt, I.D.; Rawal, R.S.; Nandi, S.K. Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi. J. Appl. Biochem. Biotechnol. 2016, 179, 911–926.
  • Jugran, A.K.; Rawat, S.; Bhatt, I.D.; Rawal, R.S. Essential oil Composition, Phenolics and Antioxidant Activities of Valeriana jatamansi at Different Phenological Stages. Plant Biosyst. 2021, 155, 891–898.
  • Labulo, A.H.; David, O.A.; Terna, A.D. Green Synthesis and Characterization of Silver Nanoparticles Using Morinda Lucida Leaf Extract and Evaluation of its Antioxidant and Antimicrobial Activity. Chem. Pap. 2022, 76, 7313–7325.
  • Ulewicz-Magulska, B.; Wesolowski, M. Total Phenolic Contents and Antioxidant Potential of Herbs Used for Medical and Culinary Purposes. Plant Foods Hum. Nutrit. 2019, 74, 61–67.
  • Panchal, P.; Meena, P.; Nehra, S.P. A Rapid Green Synthesis of Ag/AgCl- NC Photocatalyst for Environmental Applications. Environ Sci Pollut Res 2021, 28, 3972–3982.
  • Wali, L.A.; Alwan, A.M.; Dheyab, A.B.; Hashim, D.A. Excellent Fabrication of Pd-Ag NPs/PSi Photocatalyst Based on Bimetallic Nanoparticles for Improving Methylene Blue Photocatalytic Degradation. Optik. (Stuttg) 2019, 179, 708–717.
  • Rani, P.; Kumar, V.; Singh, P.P.; Matharu, A.S.; Zhang, W.; Kim, K.H.; Rawat, M. Highly Stable AgNPs Prepared via a Novel Green Approach for Catalytic and Photocatalytic Removal of Biological and non-Biological Pollutants. Environ. Intern. 2020, 143, 105924.
  • Nguyen, T.H.; Hoang, N.H.; Van Tran, C.; Nguyen, P.T.M.; Dang, T.D.; Chung, W.J.; La, D.D. Green Synthesis of a Photocatalyst Ag/TiO2 Nanocomposite Using Cleistocalyx Operculatus Leaf Extract for Degradation of Organic Dyes. Chemosphere 2020, 306, 135474.
  • Tawfike, A.F.; Tate, R.; Abbott, G.; Young, L.; Viegelmann, C.; Schumacher, M.; Diederich, M.; Edrada-Ebel, R. Metabolomic Tools to Assess the Chemistry and Bioactivity of Endophytic Aspergillus Strain. Chem. Biodivers. 2017, 14, 1700040.
  • Kamal, N.; Viegelmann, C.V.; Clements, C.J.; Edrada-Ebel, R. Metabolomics-guided Isolation of Anti-Trypanosomal Metabolites from the Endophytic Fungus Lasiodiplodia Theobromae. Planta Med. 2017, 234, 565–573.
  • Abbas-Mohammadi, M.; Farimani, M.M.; Salehi, P.; Ebrahimi, S.N.; Sonboli, A.; Kelso, C.; Skropeta, D. Acetylcholinesterase-inhibitory Activity of Iranian Plants: Combined HPLC/Bioassay-Guided Fractionation, Molecular Networking and Docking Strategies for the Dereplication of Active Compounds. J. Pharma Biomed. Anal. 2018, 158, 471–479.