2,761
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Biological importance and synthesis of 1,2,3-triazole derivatives: a review

, , , , , , , & show all
Article: 2307989 | Received 05 Oct 2023, Accepted 16 Jan 2024, Published online: 30 Jan 2024

References

  • Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications,”. Molecules 2020, 25 (8), 1909. doi:10.3390/molecules25081909.
  • Mekheimer, R.A.; Abuo-Rahma, G.E.D.A.; Abd-Elmonem, M.; Yahia, R.; Hisham, M.; Hayallah, A.M.; Mostafa, S.M.; Abo-Elsoud, F.A.; Sadek, K.U. New S-Triazine/Tetrazole Conjugates as Potent Antifungal and Antibacterial Agents: Design, Molecular Docking and Mechanistic Study,”. J. Mol. Struct. 2022, 1267, 133615. doi:10.1016/j.molstruc.2022.133615.
  • El-Reedy, A.A.M.; Soliman, N.K. Synthesis, Biological Activity and Molecular Modeling Study of Novel 1,2,4-Triazolo[4,3-b][1,2,4,5]Tetrazines and 1,2,4-Triazolo[4,3-b][1,2,4]Triazines. Sci. Rep. 2020, 10 (1), 1–18. doi:10.1038/s41598-019-56847-4.
  • Kabir, E.; Uzzaman, M. A Review on Biological and Medicinal Impact of Heterocyclic Compounds. Results. Chem. 2022, 4 (8), 100606. doi:10.1016/j.rechem.2022.100606.
  • Li Petri, G.; Holl, R.; Spanò, V.; Barreca, M.; Sardo, I.; Raimondi, M.V. Editorial: Emerging Heterocycles as Bioactive Compounds. Front. Chem. 2023, 11 (April), 1–3. doi:10.3389/fchem.2023.1202192.
  • Ullah, F.; Ullah, S.; Khan, M.F.A.; Mustaqeem, M.; Paracha, R.N.; Rehman, M.F.U.; Kanwal, F.; Hassan, S.S.U.; Bungau, S. Applications of Heterocyclic Compounds. Encyclopedia 2022. https://encyclopedia.pub/entry/29879.
  • Fang, W.Y.; Ravindar, L.; Rakesh, K.P.; Manukumar, H.M.; Shantharam, C.S.; Alharbi, N.S.; Qin, H.L. Synthetic Approaches and Pharmaceutical Applications of Chloro-Containing Molecules for Drug Discovery: A Critical Review. Eur. J. Med. Chem. 2019, 173, 117–153. doi:10.1016/j.ejmech.2019.03.063.
  • Heravi, M.M.; Vavsari, V.F. Recent Advances in Application of Amino Acids: Key Building Blocks in Design and Syntheses of Heterocyclic Compounds. Adv. Heterocycl. Chem. 2015, 114, 77–145. https://doi.org/10.1016/BS.AIHCH.2015.02.002.
  • Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-Containing Hybrids as Leads in Medicinal Chemistry: A Recent Overview. Bioorg. Med. Chem. 2019, 27 (16), 3511–3531. doi:10.1016/j.bmc.2019.07.005.
  • Nehra, N.; Tittal, R.K.; Ghule, V.D. 1, 2, 3-Triazoles of 8-Hydroxyquinoline and HBT: Synthesis and Studies (DNA Binding, Antimicrobial, Molecular Docking, ADME, and DFT). ACS Omega 2021, 6, 27089–27100. doi:10.1021/acsomega.1c03668
  • Kumar, S.; Khokra, S.L.; Yadav, A. Triazole Analogues as Potential Pharmacological Agents: A Brief Review. Futurure J. Pharm. Sci. 2021, 7 (1), 106. doi:10.1186/s43094-021-00241-3.
  • Ferreira, S.B.; Sodero, A.C.; Cardoso, M.F.; Lima, E.S.; Kaiser, C.R.; Silva, F.P.; Ferreira, V.F. Synthesis, Biological Activity, and Molecular Modeling Studies of 1H-1,2,3-Triazole Derivatives of Carbohydrates as Alpha-Glucosidases Inhibitors. J. Med. Chem. 2010, 53 (6), 2364–75. doi:10.1021/jm901265h.
  • Gonnet, L.; Baron, M.; Baltas, M. Synthesis of Biologically Relevant 1,2,3- and 1,3,4-Triazoles: From Classical Pathway to Green Chemistry. Molecules 2021 Sep 18, 26 (18), 5667. doi:10.3390/molecules26185667.
  • Gupta, O.; Pradhan, T.; Chawla, G. An Updated Review on Diverse Range of Biological Activities of 1,2,4-Triazole Derivatives: Insight Into Structure Activity Relationship. J. Mol. Struct. 2023, 1274, 134487. doi:10.1016/j.molstruc.2022.134487.
  • Santiago, J.V.; Burtoloso, A.C.B. Synthesis of Fused Bicyclic [1,2,3]-Triazoles from γ-Amino Diazoketones. ACS Omega 2019, 4 (1), 159–168. doi:10.1021/acsomega.8b02764.
  • Forezi, L.D.S.; Lima, C.G.; Amaral, A.A.; Ferreira, P.G.; de Souza, M.C.B.; Cunha, A.C.; da Silva, F.D.C.; Ferreira, V.F. Bioactive 1,2,3-Triazoles: An Account on Their Synthesis, Structural Diversity and Biological Applications. Chem. Records 2021, 21 (10), 2782–2807. doi:10.1002/tcr.202000185.
  • Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological Significance of Triazole Scaffold. J. Enzyme Inhib. Med. Chem. 2011, 26 (1), 1–21. doi:10.3109/14756360903524304.
  • Chen, Z.; Jiang, Y.; Xu, C.; Sun, X.; Ma, C.; Xia, Z.; Zhao, H.Z. Oleanane-Type Triterpene Conjugates with 1H-1,2,3-Triazole Possessing of Fungicidal Activity. Molecules 2022, 27 (15), 1–13. doi:10.3390/molecules27154928.
  • Serafini, M.; Pirali, T.; Tron, G.C. Click 1,2,3-Triazoles in Drug Discovery and Development: From the Flask to the Clinic?,”. Adv. Heterocycl. Chem. 2021, 134, 101–148. doi:10.1016/bs.aihch.2020.10.001.
  • Horne, W.S.; Yadav, M.K.; Stout, C.D.; Ghadiri, M.R. Heterocyclic Peptide Backbone Modifications in an α-Helical Coiled Coil. J. Am. Chem. Soc. 2004, 126 (47), 15366–15367. doi:10.1021/ja0450408.
  • Padhyar, K.T. A Brief Review on Triazole and its Pharmacological Application. Int. J. Curr. Sci. Res. Rev. 2022, 5 (1), 212–25. doi:10.47191/ijcsrr/V5-i1-25.
  • Bijani, S.; Iqbal, D.; Mirza, S.; Jain, V.; Jahan, S.; Alsaweed, M.; Madkhali, Y.; Alsagaby, S.A.; Banawas, S.; Algarni, A.; Alrumaihi, F.; Rawal, R.M.; Alturaiki, W.; Shah, A. Green Synthesis and Anticancer Potential of 1,4-Dihydropyridines-Based Triazole Derivatives: In Silico and In Vitro Study. Life 2022, 12 (4), 519. doi:10.3390/life12040519.
  • Singh, P.; Kumar, V. Hybrid Drugs: Design and Applications. Pharmaceuticals (Basel) 2023, 26 (16), 1358. doi:10.3390/ph16101358.
  • Dheer, D.; Singh, V.; Shankar, R. Medicinal Attributes of 1,2,3-Triazoles: Current Developments. Bioorg. Med. Chem. 2017, 71 (16), 30–54. doi:10.1016/j.bioorg.2017.01.010.
  • Ashwini, N.; Garg, M.; Mohan, C.D.; Fuchs, J.E.; Rangappa, S.; Anusha, S.; Swaroop, T.R.; Rakesh, K.S.; Kanojia, D.; Madan, V.; Bender, A.; Koeffler, H.P.; Basappa, S.; Rangappa, K.S. Synthesis of 1,2-Benzisoxazole Tethered 1,2,3-Triazoles That Exhibit Anticancer Activity in Acute Myeloid Leukemia Cell Lines by Inhibiting Histone Deacetylases, and Inducing p21 and Tubulin Acetylation. Bioorg. Med. Chem. 2015, 23 (18), 6157–6165. doi:10.1016/j.bmc.2015.07.069.
  • Stefely, J.A.; Palchaudhuri, R.; Miller, P.A.; Peterson, R.J.; Moraski, G.C.; Hergenrother, P.J.; Miller, M.J. N -((1-Benzyl-1 H-1,2,3-Triazol-4-yl)Methyl)Arylamide as a New Scaffold That Provides Rapid Access to Antimicrotubule Agents: Synthesis and Evaluation of Antiproliferative Activity Against Select Cancer Cell Lines. J Med. Chem. 2010, 53 (8), 3389–3395. doi:10.1021/jm1000979.
  • Grymel, M.; Pastuch-Gawołek, G.; Lalik, A.; Zawojak, M.; Boczek, S.; Krawczyk, M.; Erfurt, K. Glycoconjugation of Betulin Derivatives Using Copper-Catalyzed 1,3-Dipolar Azido-Alkyne Cycloaddition Reaction and a Preliminary Assay of Cytotoxicity of the Obtained Compounds. Molecules 2020, 25 (24). doi:10.3390/molecules25246019.
  • Luan, T.; Quan, Z.; Fang, Y.; Yang, H. Design, Synthesis and Antiproliferative Activity of Chrysin Derivatives Bearing Triazole Moieties. Chin. J. Org. Chem. 2020, 40 (2), 440–46. doi:10.6023/cjoc201907012.
  • Gholampour, M.; Ranjbar, S.; Edraki, N.; Mohabbati, M.; Firuzi, O.; Khoshneviszadeh, M. Click Chemistry-Assisted Synthesis of Novel Aminonaphthoquinone-1,2,3-Triazole Hybrids and Investigation of Their Cytotoxicity and Cancer Cell Cycle Alterations. Bioorg. Chem. 2019, 88 (19), 102967. doi:10.1016/j.bioorg.2019.102967.
  • Ruddarraju, R.R.; Murugulla, A.C.; Kotla, R.; Chandra Babu Tirumalasetty, M.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R.; Baburao, K.; Parasa, L.S. Design, Synthesis, Anticancer, Antimicrobial Activities and Molecular Docking Studies of Theophylline Containing Acetylenes and Theophylline Containing 1,2,3-Triazoles with Variant Nucleoside Derivatives. Eur. J. Med. Chem. 2016, 123, 379–396. doi:10.1016/j.ejmech.2016.07.024.
  • Bistrović, A.; Krstulović, L.; Stolić, I.; Drenjančević, D.; Talapko, J.; Taylor, M.C.; Kelly, J.M.; Bajić, M.; Raić-Malić, S. Synthesis, Anti-Bacterial and Anti-Protozoal Activities of Amidinobenzimidazole Derivatives and Their Interactions with DNA and RNA. J. Enzyme Inhib. Med. Chem. 2018, 33 (1), 1323–1334. doi:10.1080/14756366.2018.1484733.
  • Kathleen, L.; Ferreira, M.; Rêgo, V.; Pereira, A. Derivatives and Their Evaluation as Therapeutic Strategy for Malaria Control. Eur. J. Med. Chem. 2023, 255, 2–6. doi:10.1016/j.ejmech.2023.115400.
  • Oramas-Royo, S.; López-Rojas, P.; Amesty, A.; Gutiérrez, D.; Flores, N.; Martín- Rodríguez, P.; Fernández-Pérez, L.; Estévez-Braun, A. Synthesis and Antiplasmodial Activity of 1,2,3-Triazole-Naphthoquinone Conjugates. Molecules 2019, 24 (21), 3917. doi:10.3390/molecules24213917.
  • Rahme, E.; Bernatsky, S. NSAIDS and Risk of Lower Gastrointestinal Bleeding. Lancet 2010, 376 (9736), 146–148. doi:10.1016/S0140-6736(10)60839-2.
  • Angajala, K.K.; Vianala, S.; Macha, R.; Raghavender, M.; Thupurani, M.K.; Pathi, P.J. Synthesis, Anti-Inflammatory, Bactericidal Activities and Docking Studies of Novel 1,2,3-Triazoles Derived from Ibuprofen Using Click Chemistry. Springerplus. 2016, 5 (1). doi:10.1186/s40064-016-2052-5.
  • Naaz, F.; Preeti Pallavi, M.C.; Shafi, S.; Mulakayala, N.; Shahar Yar, M.; Sampath Kumar, H.M. 1,2,3-Triazole Tethered Indole-3-Glyoxamide Derivatives as Multiple Inhibitors of 5-LOX, COX-2 & Tubulin: Their Anti-Proliferative & Anti-Inflammatory Activity. Bioorg. Chem. 2018, 81. doi:10.1016/j.bioorg.2018.07.029.
  • Assis, S.P.D.O.; da Silva, M.T.; da Silva, F.T.; Sant’Anna, M.P.; de Albuquerque Tenório, C.M.; dos Santos, C.F.B.; da Fonseca, C.S.; Seabra, G.; Lima, V.L.; de Oliveira, R.N. Design and Synthesis of Triazole-Phthalimide Hybrids with Anti-Inflammatory Activity. Chem. Pharm. Bull. 2019, 67 (2), 96–105. doi:10.1248/cpb.c18-00607.
  • Das, T.; Jayasudha, R.; Chakravarthy, S.K.; Prashanthi, G.S.; Bhargava, A.; Tyagi, M.; Rani, P.K.; Pappuru, R.R.; Sharma, S.; Shivaji, S. Alterations in the gut Bacterial Microbiome in People with Type 2 Diabetes Mellitus and Diabetic Retinopathy. Sci. Rep. 2021, 11 (1), 1–15. doi:10.1038/s41598-020-79139-8.
  • Zhang, W.; Li, J.; Lu, S.; Han, N.; Miao, J.; Zhang, T.; Qiang, Y.; Kong, Y.; Wang, H.; Gao, T.; Liu, Y.; Li, X.; Peng, X.; Chen, X.; Zhao, X.; Che, J.; Zhang, L.; Chen, X.; Zhang, Q.; Kan, B. Gut Microbiota Community Characteristics and Disease-Related Microorganism Pattern in a Population of Healthy Chinese People. Sci. Rep. 2019, 9 (1), 1–10. doi:10.1038/s41598-018-37186-2.
  • Iraji, A.; Shareghi-Brojeni, D.; Mojtabavi, S.; Faramarzi, M.A.; Akbarzadeh, T.; Saeedi, M. Cyanoacetohydrazide Linked to 1,2,3-Triazole Derivatives: A new Class of α-Glucosidase Inhibitors. Sci. Rep. 2022, 12 (1), 1–15. doi:10.1038/s41598-022-11771-y.
  • Dastjerdi, H.F.; Naderi, N.; Nematpour, M.; Rezaee, E.; Mahboubi-Rabbani, M.; Ebrahimi, M.; Hosseinipoor, S.; Hosseini, O.; Tabatabai, S.A. Design, Synthesis and Anti-Diabetic Activity of Novel 1,2,3-Triazole-5-Carboximidamide Derivatives as Dipeptidyl Peptidase-4 Inhibitors. J. Mol. Struct. 2020, 1221, 128745. doi:10.1016/j.molstruc.2020.128745.
  • Saeedi, M.; Mohammadi-Khanaposhtani, M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design and Synthesis of Novel Quinazolinone-1,2,3-Triazole Hybrids as new Anti-Diabetic Agents: In Vitro α-Glucosidase Inhibition, Kinetic, and Docking Study. Bioorg. Chem. 2019, 83, 161–169. doi:10.1016/j.bioorg.2018.10.023.
  • Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S.G.; Yang, Z.; Chan, R.J.; Liu, Y.; Zheng, J.; Zhang, Z.Y. Targeting Mycobacterium Protein Tyrosine Phosphatase B for Antituberculosis Agents. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (10), 4573–4578. doi:10.1073/pnas.0909133107.
  • Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Anjana Devi, T.; Kalivendi, S.V.; Kantevari, S. Design, Synthesis, and Structure-Activity Correlations of Novel Dibenzo[b,d] Furan, Dibenzo[b,d]Thiophene, and N-Methylcarbazole Clubbed 1,2,3-Triazoles as Potent Inhibitors of Mycobacterium Tuberculosis. J. Med. Chem. 2012, 55 (8), 3911–3922. doi:10.1021/jm300125e.
  • de Oliveira, V.N.M.; do Amaral Moura, C.F.; dos Santos Peixoto, A.; Ferreira, V.P.G.; Araújo, H.M.; Pimentel, L.M.L.M.; do Ó Pessoa, C.; Nicolete, R.; Dos Anjos, J.V.; Sharma, P.P.; Rathi, B.; Pena, L.J.; Rollin, P.; Tatibouët, A.; Nascimento de Oliveira, R. Synthesis of Alkynylated 1,2,4-Oxadiazole/1,2,3-1H-Triazole Glycoconjugates: Discovering New Compounds for Use in Chemotherapy Against Lung Carcinoma and Mycobacterium Tuberculosis. Eur. J. Med. Chem. 2021, 220, 113472. doi:10.1016/j.ejmech.2021.113472.
  • Erasmus, C.; Aucamp, J.; Smit, F.J.; Seldon, R.; Jordaan, A.; Warner, D.F.; N’Da, D.D. Synthesis and Comparison of in Vitro Dual Anti-Infective Activities of Novel Naphthoquinone Hybrids and Atovaquone. Bioorg. Chem. 2021, 114. doi:10.1016/j.bioorg.2021.105118.
  • Seck, L.; Nguemo, F. Triazole, Imidazole, and Thiazole-Based Compounds as Potential Agents Against Coronavirus. Results Chem. 2021, 1. doi:10.1016/j.rechem.2021.100132.
  • Al-Humaidi, J.Y.; Shaaban, M.M.; Rezki, N.; Aouad, M.R.; Zakaria, M.; Jaremko, M.; Hagar, M.; Elwakil, B.H. 1,2,3-Triazole-Benzofused Molecular Conjugates as Potential Antiviral Agents Against SARS-CoV-2 Virus Variants. Life 2022, 12 (9), 1–14. doi:10.3390/life12091341.
  • Andreeva, O.V.; Garifullin, B.F.; Zarubaev, V.V.; Slita, A.V.; Yesaulkova, I.L.; Saifina, L.F.; Shulaeva, M.M.; Belenok, M.G.; Semenov, V.E.; Kataev, V.E. Synthesis of 1,2,3-Triazolyl Nucleoside Analogues and Their Antiviral Activity. Mol. Diversity 2021, 25 (1), 473–490. doi:10.1007/s11030-020-10141-y.
  • Dantas, W.M.; de Oliveira, V.N.M.; Santos, D.A.L.; Seabra, G.; Sharma, P.P.; Rathi, B.; Pena, L.J.; de Oliveira, R.N. Searching Anti-Zika Virus Activity in 1 H-1,2,3-Triazole Based Compounds. Molecules 2021, 26 (19). doi:10.3390/molecules26195869.
  • Marzi, M.; Farjam, M.; Kazeminejad, Z.; Shiroudi, A.; Kouhpayeh, A.; Zarenezhad, E. A Recent Overview of 1,2,3-Triazole-Containing Hybrids as Novel Antifungal Agents: Focusing on Synthesis, Mechanism of Action, and Structure-Activity Relationship (SAR). J. Chem. 2022, 2022. doi:10.1155/2022/7884316.
  • Akolkar, S.V.; Nagargoje, A.A.; Shaikh, M.H.; Warshagha, M.Z.A.; Sangshetti, J.N.; Damale, M.G.; Shingate, B.B. New N-Phenylacetamide-Linked 1,2,3-Triazole-Tethered Coumarin Conjugates: Synthesis, Bioevaluation, and Molecular Docking Study. Archiv Der Pharmazie (Weinheim) 2020, 353 (11). doi:10.1002/ardp.202000164.
  • Yan, W.; Wang, X.; Li, K.; Li, T.X.; Wang, J.J.; Yao, K.C.; Cao, L.L.; Zhao, S.S.; Ye, Y.H. Design, Synthesis, and Antifungal Activity of Carboxamide Derivatives Possessing 1,2,3-Triazole as Potential Succinate Dehydrogenase Inhibitors. Pestic. Biochem. Physiol. 2019, 156, 160–169. doi:10.1016/j.pestbp.2019.02.017.
  • Mantoani, S.P.; de Andrade, P.; Chierrito, T.P.C.; Figueredo, A.S.; Carvalho, I. Potential Triazole-Based Molecules for the Treatment of Neglected Diseases. Curr. Med. Chem. 2019, 26 (23), 4403–4434. doi:10.2174/0929867324666170727103901.
  • Porta, E.O.J.; Ballari, M.S.; Carlucci, R.; Wilkinson, S.; Ma, G.; Tekwani, B.L.; Labadie, G.R. Systematic Study of 1,2,3-Triazolyl Sterols for the Development of new Drugs Against Parasitic Neglected Tropical Diseases. Eur. J. Med. Chem. 2023, 254, 15378. doi:10.1016/j.ejmech.2023.115378.
  • Kalinin, D.V.; Jana, S.K.; Pfafenrot, M.; Chakrabarti, A.; Melesina, J.; Shaik, T.B.; Lancelot, J.; Pierce, R.J.; Sippl, W.; Romier, C.; Jung, M.; Holl, R. Structure-Based Design, Synthesis, and Biological Evaluation of Triazole-Based SmHDAC8 Inhibitors. ChemMedChem 2020, 15 (7), 571–584. doi:10.1002/cmdc.201900583.
  • Jiang, X.; Hao, X.; Jing, L.; Wu, G.; Kang, D.; Liu, X.; Zhan, P. Recent Applications of Click Chemistry in Drug Discovery. Expert Opin. Drug Discovery 2019, 14 (8), 779–789. doi:10.1080/17460441.2019.1614910.
  • Vaishnani, M.J.; Jain, V.D. Green Synthesis of 1,4-Disubstituted 1,2,3-Triazole Acetamide Derivatives by Utilizing the Click Chemistry Approach. Rasayan J. Chem. 2023, 16 (2), 811–19. doi:10.31788/RJC.2023.1628271.
  • Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1,2,3-Triazole-Linked Isosteres as Pharmacophores in Drug Discovery: Review. RSC Adv. 2020, 10 (10), 5610–5635. doi:10.1039/C9RA09510A.
  • Kumar, S.; Sharma, B.; Mehra, V.; Kumar, V. Recent Accomplishments on the Synthetic/Biological Facets of Pharmacologically Active 1H-1,2,3-Triazoles. Eur. J. Med. Chem. 2021, 212, 113069. doi:10.1016/j.ejmech.2020.113069.
  • Rodrigues, L.D.; Sunil, D.; Chaithra, D.; Bhagavath, P. 1,2,3/1,2,4-Triazole Containing Liquid Crystalline Materials: An up-to-Date Review of Their Synthetic Design and Mesomorphic Behavior. J. Mol. Liq. 2020, 297, 111909. doi:10.1016/j.molliq.2019.111909.
  • Nemallapudi, B.R.; Guda, D.R.; Ummadi, N.; Avula, B.; Zyryanov, G.V.; Reddy, C.S.; Gundala, S. New Methods for Synthesis of 1,2,3-Triazoles: A Review. Polycyclic Aromat. Compd. 2020, 1–19. doi:10.1080/10406638.2020.1866038.
  • De Nino, A.; Maiuolo, L.; Costanzo, P.; Algieri, V.; Jiritano, A.; Olivito, F.; Tallarida, M.A. Recent Progress in Catalytic Synthesis of 1,2,3-Triazoles. Catalysts 2021, 11 (9), 1–48. doi:10.3390/catal11091120.
  • Dai, J.; Tian, S.; Yang, X.; Liu, Z. Synthesis Methods of 1,2,3-/1,2,4-Triazoles: A Review. Front. Chem. 2022, 10 (9), 1–24. doi:10.3389/fchem.2022.891484.
  • Opsomer, T.; Dehaen, W. Metal-free Syntheses of N-Functionalized and NH-1,2,3-Triazoles: An Update on Recent Developments. Chem. Commun. 2021, 57 (13), 1568–1590. doi:10.1039/D0CC06654K.
  • Rengasamy, R.; Vijayalakshmi, K.; Punitha, N.; Paul Raj, J.; Karthikeyan, K.; Elangovan, J. A Novel Route to 1,4-Disubstituted-1,2,3-Triazoles Through Metal-Free Decarboxylative Azide-Alkene Cycloaddition. Tetrahedron Lett. 2021, 84, 153440. doi:10.1016/j.tetlet.2021.153440.
  • Camberlein, V.; Kraupner, N.; Bou Karroum, N.; Lipka, E.; Deprez-Poulain, R.; Deprez, B.; Bosc, D. Multi-component Reaction for the Preparation of 1,5-Disubstituted 1,2,3-Triazoles by in-Situ Generation of Azides and Nickel-Catalyzed Azide-Alkyne Cycloaddition. Tetrahedron Lett. 2021, 73, 153131. doi:10.1016/j.tetlet.2021.153131.
  • Patterson, S.J.M.; Clark, P.R.; Williams, G.D.; Tomkinson, N.C.O. An Azide and Acetylene Free Synthesis of 1-Substituted 1,2,3-Triazoles. Tetrahedron Lett. 2020, 61 (45), 152483. doi:10.1016/j.tetlet.2020.152483.
  • Asgari, M.S.; Bahadorikhalili, S.; Ghaempanah, A.; Rashidi Ranjbar, P.; Rahimi, R.; Abbasi, A.; Larijani, B.; Mahdavi, M. Copper-catalyzed one-pot Synthesis of Amide Linked 1,2,3-Triazoles Bearing Aryloxy Skeletons. Tetrahedron Lett. 2021, 65, 152765. doi:10.1016/j.tetlet.2020.152765.
  • Saikia, A.A.; Nishanth Rao, R.; Das, S.; Jena, S.; Rej, S.; Maiti, B.; Chanda, K. Sequencing [3+2]-Cycloaddition and Multicomponent Reactions: A Regioselective Microwave-Assisted Synthesis of 1,4-Disubstituted 1,2,3-Triazoles Using Ionic Liquid Supported Cu(II) Precatalysts in Methanol. Tetrahedron Lett. 2020, 61 (36), 152273. doi:10.1016/j.tetlet.2020.152273.
  • Li, L.; Xing, X.; Zhang, C.; Zhu, A.; Fan, X.; Chen, C.; Zhang, G. Novel Synthesis of 5-Iodo-1,2,3-Triazoles Using an Aqueous Iodination System Under air. Tetrahedron Lett. 2018, 59 (39), 3563–3566. doi:10.1016/j.tetlet.2018.08.039.
  • Garg, A.; Ali, A.A.; Damarla, K.; Kumar, A.; Sarma, D. Aqueous Bile Salt Accelerated Cascade Synthesis of 1,2,3-Triazoles from Arylboronic Acids. Tetrahedron Lett. 2018, 59 (45), 4031–4035. doi:10.1016/j.tetlet.2018.09.064.
  • Maiuolo, L.; Russo, B.; Algieri, V.; Nardi, M.; Di Gioia, M.L.; Tallarida, M.A.; De Nino, A. Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles by 1,3-Dipolar Cycloaddition: Role of Er(OTf)3, Ionic Liquid and Water. Tetrahedron Lett. 2019, 60 (9), 672–674. doi:10.1016/j.tetlet.2019.01.053.
  • Kumar, B.S.; Gadakh, S.; Sudalai, A. Metal-free’ Synthesis of 1,2,3-Triazoles via Tandem Azidation, Intramolecular [3+2]-Cycloaddition and Aromatization of Ethyl Acrylate Derivatives. Tetrahedron Lett. 2018, 59 (24), 2365–2367. doi:10.1016/j.tetlet.2018.05.020.
  • Zheng, Z.; Shi, L. An Efficient Regioselective Copper-Catalyzed Approach to the Synthesis of 1,2,3-Triazoles from N-Tosylhydrazones and Azides. Tetrahedron Lett. 2016, 57 (46), 5132–5134. doi:10.1016/j.tetlet.2016.10.033.
  • Ali, A.A.; Konwar, M.; Chetia, M.; Sarma, D. [Bmim]OH Mediated Cu-Catalyzed Azide–Alkyne Cycloaddition Reaction: A Potential Green Route to 1,4-Disubstituted 1,2,3-Triazoles. Tetrahedron Lett. 2016, 57 (50), 5661–5665. doi:10.1016/j.tetlet.2016.11.014.
  • Vergara-Arenas, B.I.; Lomas-Romero, L.; Ángeles-Beltrán, D.; Negrón-Silva, G.E.; Gutiérrez Carrillo, A.; Lara, V.H.; Morales-Serna, J.A. Multicomponent Synthesis of 4-Aryl-NH-1,2,3-Triazoles in the Presence of Al-MCM-41 and Sulfated Zirconia. Tetrahedron Lett. 2017, 58 (28), 2690–2694. doi:10.1016/j.tetlet.2017.05.055.
  • Reddy, G.S.; Reddy, L.M.; Kumar, A.S.; Ramachary, D.B. Organocatalytic Selective [3+2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1,2,3-Triazoles and 4-Arylthio-1,2,3-Triazoles. J. Org. Chem. 2020, 85 (23), 15488–15501. doi:10.1021/acs.joc.0c02247.
  • Rajabi-Moghaddam, H.; Naimi-Jamal, M.R.; Tajbakhsh, M. Fabrication of Copper(II)-Coated Magnetic Core-Shell Nanoparticles Fe3O4@SiO2-2-Aminobenzohydrazide and Investigation of its Catalytic Application in the Synthesis of 1,2,3-Triazole Compounds. Sci. Rep. 2021, 11 (1), 1–14. doi:10.1038/s41598-021-81632-7.
  • Nandi, D.; Perla, V.K.; Ghosh, S.K.; Arderne, C.; Mallick, K. Copper-azide Nanoparticle: A ‘Catalyst-cum-Reagent’ for the Designing of 5-Alkynyl 1,4-Disubstituted Triazoles. Sci. Rep. 2020, 10 (1), 1–10. doi:10.1038/s41598-020-74018-8.
  • Cui, X.; Zhang, X.; Wang, W.; Zhong, X.; Tan, Y.; Wang, Y.; Zhang, J.; Li, Y.; Wang, X. Regitz Diazo Transfer Reaction for the Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles and Subsequent Regiospecific Construction of 1,4-Disubstituted 1,2,3-Triazoles via C-C Bond Cleavage. J. Org. Chem. 2021, 86 (5), 4071–4080. doi:10.1021/acs.joc.0c02912.
  • Kwok, S.W.; Fotsing, J.R.; Fraser, R.J.; Rodionov, V.O.; Fokin, V.V. Transition-Metal-Free Catalytic Synthesis of 1,5-Diaryl-1,2,3-Triazoles. Org. Lett. 2010, 12 (19), 11–13. doi:10.1021/ol101568d.
  • Bahadorikhalili, S.; Ma’mani, L.; Mahdavi, H.; Shafiee, A. Copper Supported Β-Cyclodextrin Functionalized PEGylated Mesoporous Silica Nanoparticle-Graphene Oxide Hybrid: An Efficient and Recyclable Nano-Catalyst for Straightforward Synthesis of 2-Arylbenzimidazoles and 1,2,3-Triazoles. Microporous Mesoporous Mater. 2018, 262, 207–216. doi:10.1016/j.micromeso.2017.11.046.
  • Haque, A.; Hsieh, M.F.; Hassan, S.I.; Haque Faizi, M.S.; Saha, A.; Dege, N.; Rather, J.A.; Khan, M.S. Synthesis, Characterization, and Pharmacological Studies of Ferrocene-1H-1,2,3-Triazole Hybrids. J. Mol. Struct. 2017, 1146, 536–545. doi:10.1016/j.molstruc.2017.06.027.
  • Aziz Ali, A.; Gogoi, D.; Chaliha, A.K.; Buragohain, A.K.; Trivedi, P.; Saikia, P.J.; Gehlot, P.S.; Kumar, A.; Chaturvedi, V.; Sarma, D. Synthesis and Biological Evaluation of Novel 1,2,3-Triazole Derivatives as Anti-Tubercular Agents. Bioorg. Med. Chem. Lett. 2017, 27 (16), 3698–3703. doi:10.1016/j.bmcl.2017.07.008.
  • Jia, F.; Zhang, B. Mechanistic Insight Into the Silver-Catalyzed Cycloaddition Synthesis of 1,4-Disubstituted-1,2,3-Triazoles: The key Role of Silver. New J. Chem. 2019, 43 (22), 8634–8643. doi:10.1039/C9NJ01700C.
  • Bao, P.; Yue, H.; Meng, N.; Zhao, X.; Li, J.; Wei, W. Copper-Catalyzed Three-Component Reaction of Alkynes, TMSN3, and Ethers: Regiocontrollable Synthesis of N1- and N2-Oxyalkylated 1,2,3-Triazoles. Org. Lett. 2019, 21 (18), 7218–7222. doi:10.1021/acs.orglett.9b02295.
  • Pacifico, R.; Destro, D.; Gillick-Healy, M.W.; Kelly, B.G.; Adamo, M.F.A. Preparation of Acidic 5-Hydroxy-1,2,3-Triazoles via the Cycloaddition of Aryl Azides with β-Ketoesters. J. Org. Chem. 2021, 86 (17), 11354–11360. doi:10.1021/acs.joc.1c00778.
  • Chen, J.; Liang, T.; Zhao, H.; Lin, C.; Chen, L.; Zhang, M. Silver-mediated Three-Component Cycloaddition Reaction for Direct Synthesis of 1-N-Vinyl-Substituted 1,2,3-Triazoles. Org. Biomol. Chem. 2019, 17 (19), 4843–4849. doi:10.1039/C9OB00686A.
  • Qiu, S.; Chen, Y.; Song, X.; Liu, L.; Liu, X.; Wu, L. Potassium Tert-Butoxide Promoted Synthesis of 4,5-Diaryl-2 H-1,2,3-Triazoles from Tosylhydrazones and Nitriles. Synlett. 2021, 32 (1), 86–90. doi:10.1055/s-0040-1707321.
  • Wan, J.P.; Cao, S.; Liu, Y. A Metal- and Azide-Free Multicomponent Assembly Toward Regioselective Construction of 1,5-Disubstituted 1,2,3-Triazoles. J. Org. Chem. 2015, 80 (18), 9028–9033. doi:10.1021/acs.joc.5b01121.
  • Engholm, E.; Stuhr-Hansen, N.; Blixt, O. Facile Solid-Phase Ruthenium Assisted Azide-Alkyne Cycloaddition (RuAAC) Utilizing the Cp∗RuCl(COD)-Catalyst. Tetrahedron Lett. 2017, 58 (23), 2272–2275. doi:10.1016/j.tetlet.2017.04.095.
  • Xavier, D.M.; Goldani, B.S.; Seus, N.; Jacob, R.G.; Barcellos, T.; Paixão, M.W.; Luque, R.; Alves, D. Sonochemistry in Organocatalytic Enamine-Azide [3+2] Cycloadditions: A Rapid Alternative for the Synthesis of 1,2,3-Triazolyl Carboxamides. Ultrason. Sonochem. 2017, 34, 107–114. doi:10.1016/j.ultsonch.2016.05.007.
  • Mondal, P.; Ghosh, S.; Kanti Das, S.; Bhaumik, A.; Das, D.; Islam, S.M. Use of an Efficient Polystyrene-Supported Cerium Catalyst for one-pot Multicomponent Synthesis of Spiro-Piperidine Derivatives and Click Reactions in Green Solvent. Appl. Organomet. Chem. 2018, 32 (4), 1–15. doi:10.1002/aoc.4227.
  • Garg, A.; Sarma, D.; Ali, A.A. Microwave Assisted Metal-Free Approach to Access 1,2,3-Triazoles Through Multicomponent Synthesis. Curr. Res. Green Sustainable Chem. 2020, 3, 100013. doi:10.1016/j.crgsc.2020.100013.
  • Arafa, W.A.A.; Nayl, A.E.A.A. Water as a Solvent for Ru-Catalyzed Click Reaction: Highly Efficient Recyclable Catalytic System for Triazolocoumarins Synthesis. Appl. Organomet. Chem. 2019, 33 (10), 1–12. doi:10.1002/aoc.5156.
  • Sebest, F.; Haselgrove, S.; White, A.J.P.; Díez-González, S. Metal-Free 1,2,3-Triazole Synthesis in Deep Eutectic Solvents. Synlett. 2020, 31 (6), 605–609. doi:10.1055/s-0039-1690736.
  • Kumar, N.; Ansari, M.Y.; Kant, R.; Kumar, A. Copper-catalyzed Decarboxylative Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles. Chem. Commun. 2018, 54 (21), 2627–2630. doi:10.1039/C7CC09934G.
  • Chetia, M.; Singh Gehlot, P.; Kumar, A.; Sarma, D. A Recyclable/Reusable Hydrotalcite Supported Copper Nano Catalyst for 1,4-Disubstituted-1,2,3-Triazole Synthesis via Click Chemistry Approach. Tetrahedron Lett. 2018, 59 (4), 397–401. doi:10.1016/j.tetlet.2017.12.051.
  • Yamada, M.; Takahashi, T.; Hasegawa, M.; Matsumura, M.; Ono, K.; Fujimoto, R.; Kitamura, Y.; Murata, Y.; Kakusawa, N.; Tanaka, M.; Obata, T.; Fujiwara, Y.; Yasuike, S. Synthesis, Antitumor Activity, and Cytotoxicity of 4-Substituted 1-Benzyl-5-Diphenylstibano-1H-1,2,3-Triazoles. Bioorg. Med. Chem. Lett. 2018, 28 (2), 152–154. doi:10.1016/j.bmcl.2017.11.038.
  • Wu, Z.G.; Liao, X.J.; Yuan, L.; Wang, Y.; Zheng, Y.X.; Zuo, J.L.; Pan, Y. Visible-Light-Mediated Click Chemistry for Highly Regioselective Azide–Alkyne Cycloaddition by a Photoredox Electron-Transfer Strategy. Chemistry – A European Journal 2020, 26 (25), 5694–5700. doi:10.1002/chem.202000252.
  • Wang, W.; Lin, Y.; Ma, Y.; Tung, C.H.; Xu, Z. Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of Triazole Disulfides. Org. Lett. 2018, 20 (10), 2956–2959. doi:10.1021/acs.orglett.8b01002.
  • Shu, M.; Ran, L.; Liu, K.; Yang, W.; Wang, Q. An Efficient and Regiospecific Synthesis of 1,5-Diaryl-4-Benzothiazolyl-1,2,3-Triazoles by Organocatalytic 1,3-Dipolar Cycloaddition Reactions. Synth. Commun. 2020, 50 (12), 1863–1870. doi:10.1080/00397911.2020.1758144.
  • Pokhodylo, N.T.; Tupychak, M.A.; Palchykov, V.A. Dihydro-2H-thiopyran-3(4H)-one-1,1-dioxide–a new Cyclic Ketomethylenic Reagent for the Dimroth-Type 1,2,3-Triazole Synthesis. Synth. Commun. 2020, 50 (12), 1835–1844. doi:10.1080/00397911.2020.1757113.
  • Kafle, A.; Bhattarai, S.; Handy, S.T. An Unusual Triazole Synthesis from Aurones. Synthesis (Germany) 2020, 52 (16), 2337–2346. doi:10.1055/s-0040-1708019.
  • Vroemans, R.; Horsten, T.; Van Espen, M.; Dehaen, W. 5-Formyltriazoles as Valuable Starting Materials for Unsymmetrically Substituted Bi-1,2,3-Triazoles. Front. Chem. 2020, 8 (April), 5–10. doi:10.3389/fchem.2020.00271.
  • Silaichev, P.S.; Beryozkina, T.V.; Novikov, M.S.; Dehaen, W.; Bakulev, V.A. A Base-Controlled Reaction of 2-Cyanoacetamidines (3,3-Diaminoacrylonitriles) with Sulfonyl Azides as a Route to Nonaromatic 4-Methylene-1,2,3-Triazole-5-Imines. Eur. J. Org. Chem. 2020, 2020 (24), 3688–3698. doi:10.1002/ejoc.202000453.
  • Yang, H.; Zeng, T.; Xi, S.; Hu, S.; Wu, Y.; Tang, Y. Photoinduced, Strain-Promoted Cycloadditions of: Trans-Cycloheptenones and Azides. Green Chem. 2020, 22 (20), 7023–7030. doi:10.1039/D0GC02347G.
  • Abdalkareem Jasim, S.B.; Mohammed, D.; Turki Jalil, A.; Smaisim, G.F.; Shareef Mohsen, K.; Abed Hussein, S.; Shafik, M.-S. An Efficient and Attractive Synthetic Protocol for Three-Component Preparation of NH-1,2,3-Triazoles Using a Novel Magnetically Recoverable Copper Catalyst. Polycyclic Aromat. Compd. 2023, 1–21. doi:10.1080/10406638.2023.2167217.
  • Mazur, O.M.; Zhelavskyi, S.; Zviagin, E.M.; Shishkina, V.S.; Musatov, I.V.; Kolosov, A.M.; Shvets, E.H.; Andryushchenko, A.; Chebanov, V.A. Effective Microwave-Assisted Approach to 1,2,3-Triazolobenzo-Diazepinones via Tandem Ugi Reaction/Catalyst-Free Intramolecular Azide–Alkyne Cycloaddition. Beilstein J. Org. Chem. 2021, 17, 678–687. doi:10.3762/bjoc.17.57.