199
Views
0
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Water contamination due to hexavalent chromium and its health impacts: exploring green technology for Cr (VI) remediation

Article: 2356614 | Received 13 Feb 2024, Accepted 14 May 2024, Published online: 26 Jun 2024

References

  • Handa, K.; Jindal, R. Genotoxicity induced by hexavalent chromium leading to eryptosis in Ctenopharyngodon idellus. Chemosphere 2020, 247, 125967.
  • Singh, V.; Singh, J.; Mishra, V. Sorption kinetics of an eco-friendly and sustainable Cr (VI) ion scavenger in a batch reactor. J Environ Chem Eng 2021, 9, 105125.
  • Huda, I.; Panezai, S. Chromite ore mining and associated factors in the muslim bagh ophiolite of Balochistan, Pakistan. Geosciences. (Basel) 2021, 11, 43–54.
  • de Borja Ojembarrena, F.; Sammaraie, H.; Campano, C.; Blanco, A.; Merayo, N.; Negro, C. Hexavalent chromium removal from industrial wastewater by adsorption and reduction onto cationic cellulose nanocrystals. Nanomater. 2022, 12, 4172.
  • Mitra, S.; Sarkar, A.; Sen, S. Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnol Environ Eng 2017, 2, 11.
  • Saha, R.; Nandi, R.; Saha, B. Sources and toxicity of hexavalent chromium. J. Coord. Chem. 2011, 64, 1782–1806.
  • Singh, V.; Mishra, V. Microbial removal of Cr (VI) by a new bacterial strain isolated from the site Contaminated with coal mine effluents. J Environ Chem Eng 2021, 9, 106279.
  • Oze, C.; Bird, D.; Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Natl Acad Sci U.S.A 2007, 104, 6544–6549.
  • Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium pollution in european water, sources, health risk, and remediation strategies: an overview. Int. J. Environ. Res. Public Health 2020, 17, 5438.
  • Wise, S.S.; Wise, J.P. Sr. Chromium and genomic stability. Mutat. Res. 2012, 733, 78–82.
  • Singh, V.; Singh, N.; Verma, M.; Kamal, R.; Tiwari, R.; Chivate, M.S.; Rai, S.N.; Kumar, A.; Singh, A.; Singh, M.P.; Vamanu, E.; Mishra, V. Hexavalent-chromium-induced oxidative stress and the protective role of antioxidants against cellular toxicity. Antioxidants 2022a, 11, 2375. doi:10.3390/antiox11122375.
  • Viti, C.; Marchi, E.; Decorosi, F.; Giovannetti, L. Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol. Rev. 2014, 38, 633–659.
  • Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938.
  • Park, J.E.; Shin, J.H.; Oh, W.; Choi, S.J.; Kim, J.; Kim, C.; Jeon, J. Removal of hexavalent chromium(vi) from wastewater using chitosan-coated iron oxide nanocomposite membranes. Toxics 2022, 10, 98. doi:10.3390/toxics10020098.
  • Hasan, M.M.; Salman, M.S.; Hasan, M.N.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Waliullah, R.M.; Hossain, M.S.; Kubra, K.T.; Sheikh, M.C.; Khaleque, M.A.; Marwani, H.M.; Islam, A.; Awual, M.R. Facial Conjugate Adsorbent for Sustainable Pb(II) Ion Monitoring and Removal from Contaminated Water. Colloids Surf., A 2023, 673, 131794. doi:10.1016/j.colsurfa.2023.131794.
  • Awual, M.R.; Hasan, M.M.; Shahat, A.; Naushad, M.; Shiwaku, H.; Yaita, T. Investigation of Ligand Immobilized Nano-Composite Adsorbent for Efficient Cerium(III) Detection and Recovery. Chem. Eng. J. 2015, 265, 210–218. doi:10.1016/j.cej.2014.12.052.
  • Hasan, M.N.; Salman, M.S.; Hasan, M.M.; Kubra, K.T.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Awual, M.E.; Waliullah, R.M.; Hossain, M.S.; Islam, A.; Khandaker, S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Assessing Sustainable Lutetium(III) Ions Adsorption and Recovery Using Novel Composite Hybrid Nanomaterials. J. Mol. Struct. 2023, 1276, 134795. doi:10.1016/j.molstruc.2022.134795.
  • Rehan, A.I.; Rasee, A.I.; Awual, M.E.; Waliullah, R.M.; Hossain, M.S.; Kubra, K.T.; Salman, M.S.; Hasan, M.M.; Hasan, M.N.; Sheikh, M.C.; Marwani, H.M.; Khaleque, M.A.; Islam, A.; Awual, M.R. Improving Toxic Dye Removal and Remediation Using Novel Nanocomposite Fibrous Adsorbent. Colloids Surf., A 2023, 673, 131859. doi:10.1016/j.colsurfa.2023.131859.
  • Hasan, M.M.; Kubra, K.T.; Hasan, M.N.; Awual, M.E.; Salman, M.S.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Islam, M.S.; Khandaker, S.; Islam, A.; Hossain, M.S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Sustainable Ligand-Modified Based Composite Material for the Selective and Effective Cadmium(II) Capturing from Wastewater. J. Mol. Liq. 2023, 371, 121125. doi:10.1016/j.molliq.2022.121125.
  • Awual, M.R. A Novel Facial Composite Adsorbent for Enhanced Copper(II) Detection and Removal from Wastewater. Chem. Eng. J. 2015, 266, 368–375. doi:10.1016/j.cej.2014.12.094.
  • Awual, M.R. New Type Mesoporous Conjugate Material for Selective Optical Copper(II) Ions Monitoring & Removal from Polluted Waters. Chem. Eng. J. 2017, 307, 85–94. doi:10.1016/j.cej.2016.07.110.
  • Awual, M.R. Novel Conjugated Hybrid Material for Efficient Lead(II) Capturing from Contaminated Wastewater. Materials Science and Engineering: C 2019, 101, 686–695. doi:10.1016/j.msec.2019.04.015.
  • Kubra, K.T.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Khaleque, M.A.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Awual, M.E.; Hossain, M.S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. The Heavy Lanthanide of Thulium(III) Separation and Recovery Using Specific Ligand-Based Facial Composite Adsorbent. Colloids Surf., A 2023, 667, 131415. doi:10.1016/j.colsurfa.2023.131415.
  • Kubra, K.T.; Salman, M.S.; Hasan, M.N.; Islam, A.; Hasan, M.M.; Awual, M.R. Utilizing an Alternative Composite Material for Effective Copper(II) Ion Capturing from Wastewater. J. Mol. Liq. 2021, 336, 116325. doi:10.1016/j.molliq.2021.116325.
  • Hasan, M.M.; Shenashen, M.A.; Hasan, M.N.; Znad, H.; Salman, M.S.; Awual, M.R. Natural Biodegradable Polymeric Bioadsorbents for Efficient Cationic Dye Encapsulation from Wastewater. J. Mol. Liq. 2021, 323, 114587. doi:10.1016/j.molliq.2020.114587.
  • Kubra, K.T.; Salman, M.S.; Hasan, M.N.; Islam, A.; Teo, S.H.; Hasan, M.M.; Sheikh, M.C.; Awual, M.R. Sustainable Detection and Capturing of Cerium(III) Using Ligand Embedded Solid-State Conjugate Adsorbent. J. Mol. Liq. 2021, 338, 116667. doi:10.1016/j.molliq.2021.116667.
  • Kubra, K.T.; Salman, M.S.; Znad, H.; Hasan, M.N. Efficient Encapsulation of Toxic Dye from Wastewater Using Biodegradable Polymeric Adsorbent. J. Mol. Liq. 2021, 329, 115541. doi:10.1016/j.molliq.2021.115541.
  • Awual, M.R.; Hasan, M.N.; Hasan, M.M.; Salman, M.S.; Sheikh, M.C.; Kubra, K.T.; Islam, M.S.; Marwani, H.M.; Islam, A.; Khaleque, M.A.; Waliullah, R.M.; Hossain, M.S.; Rasee, A.I.; Rehan, A.I.; Awual, M.E. Green and Robust Adsorption and Recovery of Europium(III) with a Mechanism Using Hybrid Donor Conjugate Materials. Sep. Purif. Technol. 2023, 319, 124088. doi:10.1016/j.seppur.2023.124088.
  • Salman, M.S.; Hasan, M.N.; Hasan, M.M.; Kubra, K.T.; Sheikh, M.C.; Rehan, A.I.; Waliullah, R.M.; Rasee, A.I.; Awual, M.E.; Hossain, M.S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Improving Copper(II) Ion Detection and Adsorption from Wastewater by the Ligand-Functionalized Composite Adsorbent. J. Mol. Struct. 2023, 1282, 135259. doi:10.1016/j.molstruc.2023.135259.
  • Pushkar, B.; Sevak, P.; Parab, S.; Nilkanth, N. Chromium pollution and its bioremediation mechanisms in bacteria: A review. J. Environ. Manage. 2021, 287, 112279.
  • Bhattacharya, A.; Gupta, A.; Kaur, A.; Malik, D. Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. Water Sci. Technol. 2019, 79, 411–424.
  • Murthy, M.K.; Khandayataray, P.; Padhiary, S.; Samal, D. A review on chromium health hazards and molecular mechanism of chromium bioremediation. Rev. Environ. Health 2022, 38, 461–478.
  • Saha, P.; Shinde, O.; Sarkar, S. Phytoremediation of industrial mines wastewater using water hyacinth. Int. J. Phytoremediation 2017, 19, 87–96.
  • Garg, S.K.; Tripathi, M.; Srinath, T. Strategies for chromium bioremediation of tannery effluent. Rev. Environ. Contam. Toxicol. 2012, 217, 75–140.
  • Su, Y.Q.; Yuan, S.; Guo, Y.C.; Tan, Y.Y.; Mao, H.T.; Cao, Y.; Chen, Y.E. Highly efficient and sustainable removal of Cr (VI) in aqueous solutions by photosynthetic bacteria supplemented with phosphor salts. Chemosphere 2021, 283, 131031.
  • Li, M.H.; Gao, X.; Li, C.; Yang, C.L.; Fu, C.A.; Liu, J.; Wang, R.; Chen, L.X.; Lin, J.Q.; Liu, X.M.; Lin, J.Q.; Pang, X. Isolation and identification of chromium reducing bacillus cereus species from chromium-contaminated soil for the biological detoxification of chromium. Int. J. Environ. Res. Public Health 2020, 17, 2118. doi:10.3390/ijerph17062118.
  • Plestenjak, E.; Kraigher, B.; Leskovec, S.; Mandic Mulec, I.; Marković, S.; Ščančar, J.; Milačič, R. Reduction of hexavalent chromium using bacterial isolates and a microbial community enriched from tannery effluent. Sci. Rep. 2022, 12, 20197.
  • Abreu, P.L.; Ferreira, L.M.R.; Alpoim, M.C.; Urbano, A.M. Impact of hexavalent chromium on mammalian cell bioenergetics: phenotypic changes, molecular basis and potential relevance to chromate-induced lung cancer. Biometals 2014, 27, 409–443.
  • Siidra, O.I.; Nazarchuk, E.V.; Suknotova, A.N.; Kayukov, R.A.; Krivovichev, S.V. Cr(VI) trioxide as a starting material for the synthesis of novel zero-, one-, and two-dimensional uranyl dichromates and chromate-dichromates. Inorg. Chem. 2013, 52, 4729–4735.
  • Lindsay, D.R.; Farley, K.J.; Carbonaro, R.F. Oxidation of CrIII to CrVI during chlorination of drinking water. J. Environ. Monit. 2012, 14, 1789–1797.
  • Singh, V.; Singh, J.; Mishra, V. Development of a cost-effective, recyclable and viable metal ion doped adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions. J Environ Chem Eng 2021, 9, 105124.
  • Becquer, T.; Quantin, C.; Sicot, M.; Boudot, J.P. Chromium availability in ultramafic soils from New Caledonia. Sci. Total Environ. 2003, 301, 251–261.
  • Fantoni, D.; Brozzo, G.; Canepa, M.; Marini, F.C.L.; Ottonello, G.; Zuccolini, M.V. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ. Geol. 2002, 42, 871–882.
  • Thomas, A.N.; Eiche, E.; Göttlicher, J.; Steininger, R.; Benning, L.G.; Freeman, H.M.; Tobler, D.J.; Mangayayam, M.; Dideriksen, K.; Neumann, T. Effects of metal cation substitution on hexavalent chromium reduction by green rust. Geochem. Trans. 2020, 21, 2. doi:10.1186/s12932-020-00066-8.
  • Bokare, A.D.; Choi, W. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. Environ. Sci. Technol. 2011, 45, 9332–9338.
  • Velma, V.; Vutukuru, S.S.; Tchounwou, P.B. Ecotoxicology of hexavalent chromium in freshwater fish: a critical review. Rev. Environ. Health 2009, 24, 129–145.
  • Nur-E-Alam, M.; Mia, M.A.S.; Ahmad, F.; Rahman, M.M. An overview of chromium removal techniques from tannery effluent. Appl. Water. Sci. 2020, 10, 205. doi:10.1007/s13201-020-01286-0.
  • Parisi, M.; Nanni, A.; Colonna, M. Recycling of chrome-tanned leather and its utilization as polymeric materials and in polymer-based composites: A Review. Polymers (Basel) 2021, 13, 429. doi:10.3390/polym13030429.
  • Yılmaz, O.; Kantarli, I.C.; Yuksel, M.; Saglam, M.; Yanik, J. Conversion of leather wastes to useful products. Resour. Conserv. Recycl. 2007, 49, 436–448.
  • Usha, R.; Ramasami, T. Effect of crosslinking agents (basic chromium sulfate and formaldehyde) on the thermal and thermomechanical stability of rat tail tendon collagen fibre. Thermochim. Acta 2000, 356, 59–66.
  • Pati, A.; Chaudhary, R.; Subramani, S. A review on management of chrome-tanned leather shavings: a holistic paradigm to combat the environmental issues. Environ. Sci. Pollut. Res. Int. 2014, 21, 11266–82.
  • Kordas, G. Corrosion barrier coatings: progress and perspectives of the chemical route. Corros Mater Degrad 2022, 3, 376–413.
  • Ma, X.L.; Fei, G.T.; Xu, S.H. Synthesis of polyaniline coating on the modified fiber ball and application for Cr(VI) removal. Nanoscale Res. Lett. 2021, 16, 58.
  • Das, A.P.; Mishra, S. Hexavalent chromium (vi): environment pollutant and health hazard. J Environ Res Dev 2008, 3, 386–392.
  • Qian, Y.; Li, Y.; Jungwirth, S.; Seely, N.; Fang, Y.; Shi, X. The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: a review. Int. J. Electrochem. Sci. 2015, 10, 10756–10780.
  • Rutala, W.A.; Weber, D.J. Disinfection, sterilization, and control of hospital waste. Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases 2015, 2015, 3294–3309.e4.
  • Morais, S.; Fonseca, H.M.A.C.; Oliveira, S.M.R.; Oliveira, H.; Gupta, V.K.; Sharma, B.; de Lourdes Pereira, M. Environmental and health hazards of chromated copper arsenate-treated wood: A Review. Int. J. Environ. Res. Public Health 2021, 18, 5518.
  • Kim, H.; Kim, D.J.; Koo, J.H.; Park, J.G.; Jang, Y.C. Distribution and mobility of chromium, copper, and arsenic in soils collected near CCA-treated wood structures in Korea. Sci. Total Environ. 2007, 374, 273–281.
  • Kamchanawong, S.; Veerakajohnsak, C. Arsenic, chromium, and copper leaching from CCA-treated wood and their potential impacts on landfill leachate in a tropical country. Environ. Technol. 2010, 31, 381–394.
  • Shibata, T.; Solo-Gabriele, H.M.; Fleming, L.E.; Cai, Y.; Townsend, T.G. A mass balance approach for evaluating leachable arsenic and chromium from an in-service CCA-treated wood structure. Sci. Total Environ. 2007, 372, 624–635.
  • Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972.
  • Gasparotto, J.; Martinello, K.D.B. Coal as an energy source and its impacts on human health. Energy Geosci 2021, 2, 113–120.
  • Finkelman, R.B.; Wolfe, A.; Hendryx, M.S. The future environmental and health impacts of coal. Energy Geosci 2021, 2, 99–112.
  • Ribeiro, J.; Flores, D. Occurrence, leaching, and mobility of major and trace elements in a coal mining waste dump: The case of Douro Coalfield, Portugal. Energy Geosci 2021, 2, 121–128.
  • Bokare, A.D.; Choi, W. Advanced oxidation process based on the Cr (III)/Cr (VI) redox cycle. Environ. Sci. Technol 2011, 45, 9332–9338.
  • Mishra, S.; Bharagava, R.N. Toxic and Genotoxic Effects of Hexavalent Chromium in Environment and Its Bioremediation Strategies. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 1–32.
  • Li, X.; Abdel-Moneim, A.-M.E.; Yang, B. Signaling Pathways and Genes Associated with Hexavalent Chromium-Induced Hepatotoxicity. Biol. Trace Elem. Res. 2011, doi:10.1007/s12011-022-03291-7.
  • Chakraborty, R.; Renu, K.; Eladl, M.A.; El-Sherbiny, M.; Elsherbini, D.M.A.; Mirza, A.K.; Vellingiri, B.; Iyer, M.; Dey, A.; Gopalakrishnan, A.V. Mechanism of Chromium-Induced Toxicity in Lungs, Liver, and Kidney and Their Ameliorative Agents. Biomed. Pharmacother. 2022, 151, 113119.
  • Kim, H.G.; Yoon, D.H.; Lee, W.H.; Han, S.K.; Shrestha, B.; Kim, C.H.; Lim, M.H.; Chang, W.; Lim, S.; Choi, S.; Song, W.O. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J. Ethnopharmacol 2007, 114, 307–315.
  • Bagchi, D.; Vuchetich, P.J.; Bagchi, M.; Hassoun, E.A.; Tran, M.X.; Tang, L.; Stohs, S.J. Induction of oxidative stress by chronic administration of sodium dichromate [chromium VI] and cadmium chloride [cadmium II] to rats. Free Radical Biol. Med 1997, 22, 471–478.
  • Wise, S.S.; Holmes, A.L.; Ketterer, M.E.; Hartsock, W.J.; Fomchenko, E.; Katsifis, S.; Thompson, W.D.; Wise Sr, J.P. Chromium is the proximate clastogenic species for lead chromate-induced clastogenicity in human bronchial cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2004, 560, 79–89.
  • Wakeel, A.; Xu, M.; Gan, Y. Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. Int. J. Mol. Sci 2020, 21, 728.
  • Cohen, M.D.; Kargacin, B.; Klein, C.B.; Costa, M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol 1993, 23, 255–281.
  • Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol 2021, 12, 227–245.
  • Mohamed, A.A.; El-Houseiny, W.; El-Murr, A.E.; Ebraheim, L.L.M.; Ahmed, A.I.; El-Hakim, Y.M.A. Effect of Hexavalent Chromium Exposure on the Liver and Kidney Tissues Related to the Expression of CYP450 and GST Genes of Oreochromis Niloticus Fish: Role of Curcumin Supplemented Diet. Ecotoxicol. Environ. Saf 2020, 188, 109890.
  • Li, S.; Baiyun, R.; Lv, Z.; Li, J.; Han, D.; Zhao, W.; Yu, L.; Deng, N.; Liu, Z.; Zhang, Z. Exploring the Kidney Hazard of Exposure to Mercuric Chloride in Mice:Disorder of Mitochondrial Dynamics Induces Oxidative Stress and Results in Apoptosis. Chemosphere 2019, 234, 822–29.
  • Li, H.; Shi, J.; Gao, H.; Yang, X.; Fu, Y.; Peng, Y.; Xia, Y.; Zhou, D. Hexavalent Chromium Causes Apoptosis and Autophagy by Inducing Mitochondrial Dysfunction and Oxidative Stress in Broiler Cardiomyocytes. Biol. Trace Elem. Res 2022, 200, 2866–75.
  • Shaw, P.; Mondal, P.; Dey Bhowmik, A.; Bandyopadhyay, A.; Sudarshan, M.; Chakraborty, A.; Chattopadhyay, A. Environmentally Relevant Hexavalent Chromium Disrupts Elemental Homeostasis and Induces Apoptosis in Zebrafish Liver. Bull. Environ. Contam. Toxicol. 2022, 108, 716–24.
  • Patlolla, A.K.; Barnes, C.; Yedjou, C.; Velma, V.R.; Tchounwou, P.B. Oxidative Stress, DNA Damage, and Antioxidant Enzyme Activity Induced by Hexavalent Chromium in Sprague-Dawley Rats. Environ. Toxicol. 2009, 24, 66–73.
  • Das, J.; Sarkar, A.; Sil, P.C. Hexavalent Chromium Induces Apoptosis in Human Liver (HepG2) Cells via Redox Imbalance. Toxicol. Rep 2015, 2, 600–608.
  • Lei, T.; He, Q.Y.; Cai, Z.; Zhou, Y.; Wang, Y.L.; Si, L.S.; Cai, Z.; Chiu, J.F. Proteomic Analysis of Chromium Cytotoxicity in Cultured Rat Lung Epithelial Cells. Proteomics 2008, 8, 2420–29.
  • Velma, V.; Tchounwou, P.B. Chromium-Induced Biochemical, Genotoxic and Histopathologic Effects in Liver and Kidney of Goldfish, Carassius Auratus. Mutat. Res. 2010, 698, 43–51.
  • Wang, X.; Son, Y.O.; Chang, Q.; Sun, L.; Hitron, J.A.; Budhraja, A.; Zhang, Z.; Ke, Z.; Chen, F.; Luo, J.; Shi, X. NADPH Oxidase Activation Is Required in Reactive Oxygen Species Generation and Cell Transformation Induced by Hexavalent Chromium. Toxicol. Sci. 2011, 123, 399–410.
  • Bagchi, D.; Stohs, S.J.; Downs, B.W.; Bagchi, M.; Preuss, H.G. Cytotoxicity and Oxidative Mechanisms of Different Forms of Chromium. Toxicol 2002, 180, 5–22.
  • Ahmad, I.; Maria, V.L.; Oliveira, M.; Pacheco, M.; Santos, M.A. Oxidative stress and genotoxic effects in gill and kidney of Anguilla anguilla L. exposed to chromium with or without pre-exposure to beta-naphthoflavone. Mutat. Res. 2006, 608, 16–28. doi:10.1016/j.mrgentox.2006.04.020.
  • Zheng, X.; Li, S.; Li, J.; Lv, Y.; Wang, X.; Wu, P.; Yang, Q.; Tang, Y.; Liu, Y.; Zhang, Z. Hexavalent Chromium Induces Renal Apoptosis and Autophagy via Disordering the Balance of Mitochondrial Dynamics in Rats. Ecotoxicol. Environ. Saf 2020, 204, 111061.
  • Xu, J.; Zhao, M.; Pei, L.; Zhang, R.; Liu, X.; Wei, L.; Yang, M.; Xu, Q. Oxidative stress and DNA damage in a long-term hexavalent chromium-exposed population in North China: a cross-sectional study. BMJ Open 2018, 8, e021470.
  • Pavesi, T.; Moreira, J.C. Mechanisms and Individuality in Chromium Toxicity in Humans. J. Appl. Toxicol 2020, 40, 1183–97.
  • Bagchi, D.; Stohs, S.J.; Downs, B.W.; Bagchi, M.; Preuss, H.G. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 2002, 180, 5–22.
  • Bagchi, D.; Bagchi, M.; Stohs, S.J. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol. Cell. Biochem 2001, 222, 149–58.
  • Holmes, A.L.; Wise, S.S.; Wise, J.P. Sr. Carcinogenicity of hexavalent chromium. Indian J. Med. Res 2008, 128, 353–372.
  • Son, Y.O.; Hitron, J.A.; Wang, X.; Chang, Q.; Pan, J.; Zhang, Z.; Liu, J.; Wang, S.; Lee, J.C.; Shi, X. Cr(VI) induces mitochondrial-mediated and caspase-dependent apoptosis through reactive oxygen species-mediated p53 activation in JB6 Cl41 cells. Toxicol. Appl. Pharmacol 2010, 245, 226–35.
  • Monga, A.; Fulke, A.B.; Dasgupta, D. Recent Developments in Essentiality of Trivalent Chromium and Toxicity of Hexavalent Chromium: Implications on Human Health and Remediation Strategies. J. Hazard. Mater. Adv 2022, 7, 100113.
  • Khulbe, K.C.; Matsuura, T. Removal of Heavy Metals and Pollutants by Membrane Adsorption Techniques. Appl. Water. Sci. 2018, 8 (1). doi:10.1007/s13201-018-0661-6.
  • Sankarammal, M.; Thatheyus, A.; Ramya, D. Bioremoval Of Cadmium Using Pseudomonas Fluorescens. Open Journal of Water Pollution and Treatment 2014,, 2014 (2), 92–100. doi:10.15764/wpt.2014.02010.
  • Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals 2019, 9 (8), 487. doi:10.3390/min9080487.
  • Kumar, S.; Shahnaz, T.; Selvaraju, N.; Rajaraman, P.V. Kinetic and Thermodynamic Studies on Biosorption of Cr(VI) on Raw and Chemically Modified Datura Stramonium Fruit. Environ. Monit. Assess. 2020, 192 (4). doi:10.1007/s10661-020-8181-x.
  • Abdelbasir, S.M.; McCourt, K.M.; Lee, C.M.; Vanegas, D.C. Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front. Chem. 2020, 8, doi:10.3389/fchem.2020.00782.
  • Medfu Tarekegn, M.; Zewdu Salilih, F.; Ishetu, A.I. Microbes Used as a Tool for Bioremediation of Heavy Metal from the Environment. Cogent Food & Agriculture 2020, 6 (1), 1783174. doi:10.1080/23311932.2020.1783174.
  • Volesky, B. Biosorption and Me. Water Res. 2007, 41 (18), 4017–4029. doi:10.1016/j.watres.2007.05.062.
  • Kannan, A.; Mishra, R.; Sinha, V.; Upreti, R. Reduction of Chromium-vi by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation. Toxicol. Int. 2012, 19 (1), 25. doi:10.4103/0971-6580.94512.
  • Mishra, A.; Dubey, A.; Shinghal, S. Biosorption of Chromium(VI) from Aqueous Solutions Using Waste Plant Biomass. Int. J. Environ. Sci. Technol. 2014, 12 (4), 1415–1426. doi:10.1007/s13762-014-0516-0.
  • Malik, A. Metal Bioremediation through Growing Cells. Environ. Int. 2004, 30 (2), 261–278. doi:10.1016/j.envint.2003.08.001.
  • Peng, S.-H.; Wang, R.; Yang, L.-Z.; He, L.; He, X.; Liu, X. Biosorption of Copper, Zinc, Cadmium and Chromium Ions from Aqueous Solution by Natural Foxtail Millet Shell. Ecotoxicol. Environ. Saf. 2018, 165, 61–69. doi:10.1016/j.ecoenv.2018.08.084.
  • Wang, J.; Chen, C. Biosorption of Heavy Metals by Saccharomyces Cerevisiae: A Review. Biotechnol. Adv. 2006, 24 (5), 427–451. doi:10.1016/j.biotechadv.2006.03.001.
  • Verma, N.; Sharma, R. Bioremediation of Toxic Heavy Metals: A Patent Review. Recent Pat. Biotechnol. 2017, 11 (3), doi:10.2174/1872208311666170111111631.
  • Ojuederie, O.; Babalola, O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14 (12), 1504. doi:10.3390/ijerph14121504.
  • Chojnacka, K. Biosorption and Bioaccumulation – the Prospects for Practical Applications. Environ. Int. 2010, 36 (3), 299–307. doi:10.1016/j.envint.2009.12.001.
  • Tsezos, M.; Remoudaki, E.; Angelatou, V. Biosorption Sites of Selected Metals Using Electron Microscopy. Comparative Biochemistry and Physiology Part A: Physiology 1997, 118 (3), 481–487. doi:10.1016/s0300-9629(97)00009-1.
  • Duwiejuah, A.B.; Abubakari, A.H.; Quainoo, A.K.; Amadu, Y. Review of Biochar Properties and Remediation of Metal Pollution of Water and Soil. Journal of Health and Pollution 2020, 10 (27), doi:10.5696/2156-9614-10.27.200902.
  • Dias, M.A.; Rosa, C.A.; Linardi, V.R.; Conte, R.A.; De Castro, H.F. Application of Factorial Design to Study of Heavy Metals Biosorption by Waste Biomass from Beverage Distillery. Appl. Biochem. Biotechnol. 2001, 91–93 (1–9), 413–422. doi:10.1385/abab:91-93:1-9:413.
  • Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere 2018, 207, 255–266. doi:10.1016/j.chemosphere.2018.05.050.
  • Netzahuatl-Muñoz, A.R.; Cristiani-Urbina, M.d.C.; Cristiani-Urbina, E. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus Lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies. PLoS One 2015, 10 (9), e0137086. doi:10.1371/journal.pone.0137086.
  • Park, D.; Lim, S.-R.; Yun, Y.-S.; Park, J.M. Reliable Evidences That the Removal Mechanism of Hexavalent Chromium by Natural Biomaterials Is Adsorption-Coupled Reduction. Chemosphere 2007, 70 (2), 298–305. doi:10.1016/j.chemosphere.2007.06.007.
  • Deng, L.; Zhang, Y.; Qin, J.; Wang, X.; Zhu, X. Biosorption of Cr(VI) from Aqueous Solutions by Nonliving Green Algae Cladophora Albida. Miner. Eng. 2009, 22 (4), 372–377. doi:10.1016/j.mineng.2008.10.006.
  • Moghal, A.A.B.; Lateef, M.A.; Abu Sayeed Mohammed, S.; Ahmad, M.; Usman, A.R.A.; Almajed, A. Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique. Applied Sciences 2020, 10 (21), 7568. doi:10.3390/app10217568.
  • Khanpour-Alikelayeh, E.; Partovinia, A.; Talebi, A.; Kermanian, H. Enhanced Biodegradation of Light Crude Oil by Immobilized Bacillus Licheniformis in Fabricated Alginate Beads through Electrospray Technique. Environ. Monit. Assess. 2021, 193 (6), doi:10.1007/s10661-021-09104-z.
  • Pal, D.; Maiti, S.K. An Approach to Counter Sediment Toxicity by Immobilization of Heavy Metals Using Waste Fish Scale Derived Biosorbent. Ecotoxicol. Environ. Saf. 2020, 187, 109833. doi:10.1016/j.ecoenv.2019.109833.
  • Hassanshahian, M.; Emtiazi, G.; Caruso, G.; Cappello, S. Bioremediation (Bioaugmentation/Biostimulation) Trials of Oil Polluted Seawater: A Mesocosm Simulation Study. Mar. Environ. Res. 2014, 95, 28–38. doi:10.1016/j.marenvres.2013.12.010.
  • Mancilla, H.B.; Cerrón, M.R.; Aroni, P.G.; Paucar, J.E.P.; Tovar, C.T.; Jindal, M.K.; Gowrisankar, G. Effective Removal of Cr (VI) Ions Using Low-Cost Biomass Leaves (Sambucus Nigra L.) in Aqueous Solution. Environmental Science and Pollution Research 2022, 30 (49), 106982–106995. doi:10.1007/s11356-022-24064-8.
  • Beig, S.-U.-R.; Shah, S.A. Biosorption of Cr (VI) by Acid-Modified Based-Waste Fungal Biomass from Calocybe Indica Fruiting Bodies Production. Int. J. Phytoremediation 2022, 25 (10), 1269–1288. doi:10.1080/15226514.2022.2147145.
  • Ayele, A.L.; Tizazu, B.Z.; Wassie, A.B. Chemical Modification of Teff Straw Biomass for Adsorptive Removal of Cr (VI) from Aqueous Solution: Characterization, Optimization, Kinetics, and Thermodynamic Aspects. Adsorpt. Sci. Technol. 2022, 2022, 1–25. doi:10.1155/2022/5820207.
  • Akl, M.A.; El-Zeny, A.S.; Hashem, M.A.; El-Gharkawy, E.-S.R.H.; Mostafa, A.G. Flax Fiber Based Semicarbazide Biosorbent for Removal of Cr(VI) and Alizarin Red S Dye from Wastewater. Sci. Rep. 2023, 13 (1). doi:10.1038/s41598-023-34523-y.
  • Zhang, C.; Ren, H.-X.; Zhong, C.-Q.; Wu, D. Biosorption of Cr(VI) by Immobilized Waste Biomass from Polyglutamic Acid Production. Sci. Rep. 2020, 10 (1). doi:10.1038/s41598-020-60729-5.
  • Vaddi, D.R.; Gurugubelli, T.R.; Koutavarapu, R.; Lee, D.-Y.; Shim, J. Bio-Stimulated Adsorption of Cr(VI) from Aqueous Solution by Groundnut Shell Activated Carbon@Al Embedded Material. Catalysts 2022, 12 (3), 290. doi:10.3390/catal12030290.
  • Shakya, A.; Vithanage, M.; Agarwal, T. Influence of Pyrolysis Temperature on Biochar Properties and Cr(VI) Adsorption from Water with Groundnut Shell Biochars: Mechanistic Approach. Environ. Res. 2022, 215, 114243. doi:10.1016/j.envres.2022.114243.
  • Yang, P.; Xu, Y.; Tuo, J.; Li, A.; Liu, L.; Shi, H. Preparation of Modified Pomelo Peel’s Pulp Adsorbent and Its Adsorption to Uranyl Ions. R. Soc. Open. Sci. 2019, 6 (3), 181986. doi:10.1098/rsos.181986.
  • Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A Review on Plants Extract Mediated Synthesis of Silver Nanoparticles for Antimicrobial Applications: A Green Expertise. J. Adv. Res. 2016, 7 (1), 17–28. doi:10.1016/j.jare.2015.02.007.
  • Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arabian Journal of Chemistry 2019, 12 (7), 908–931. doi:10.1016/j.arabjc.2017.05.011.
  • Vidu, R.; Matei, E.; Predescu, A.M.; Alhalaili, B.; Pantilimon, C.; Tarcea, C.; Predescu, C. Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. Toxics 2020, 8 (4), 101. doi:10.3390/toxics8040101.
  • Mittal, R.; Sharma, A.; Bhardwaj, A.K.; Bhateria, R.; Bansal, S.; Kashyap, R.; Bhukal, S. Removal of Chromium (VI) Using Spirulina Assisted Synthesized Mesoporous Iron Oxide Nanoparticles. Inorg. Chem. Commun. 2023, 154, 110881. doi:10.1016/j.inoche.2023.110881.
  • Kumar, H.; Sinha, S.K.; Goud, V.V.; Das, S. Removal of Cr(VI) by Magnetic Iron Oxide Nanoparticles Synthesized from Extracellular Polymeric Substances of Chromium Resistant Acid-Tolerant Bacterium Lysinibacillus Sphaericus RTA-01. Journal of Environmental Health Science and Engineering 2019, 17 (2), 1001–1016. doi:10.1007/s40201-019-00415-5.
  • Du, L.; Gao, P.; Liu, Y.; Minami, T.; Yu, C. Removal of Cr(VI) from Aqueous Solution by Polypyrrole/Hollow Mesoporous Silica Particles. Nanomaterials 2020, 10, 686. doi:10.3390/nano10040686.
  • Rong, K.; Wang, J.; Li, X.; Zhang, Z.; Yang, Q.; Shan, C.; Wu, T.; Liu, J. Removal of Cr(VI) by iron nanoparticles synthesized by a novel green method using Yali pear peels extracts: optimization, reactivity, and mechanism. Biomass Conversion and Biorefinery 2024, 14, 4355–4368.
  • Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front. Bioeng. Biotechnol. 2018, 6. doi:10.3389/fbioe.2018.00157.
  • Timková, I.; Sedláková-Kaduková, J.; Pristaš, P. Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites. Separations 2018, 5 (4), 54. doi:10.3390/separations5040054.
  • Arishi, A.; Mashhour, I. Microbial Mechanisms for Remediation of Hexavalent Chromium and Their Large-Scale Applications; Current Research and Future Directions. Journal of Pure and Applied Microbiology 2021, 15 (1), 53–67. doi:10.22207/jpam.15.1.32.
  • Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. doi:10.1155/2019/6730305.
  • Yilmazer, P.; Saracoglu, N. Bioaccumulation and Biosorption of Copper(II) and Chromium(III) from Aqueous Solutions by Pichia Stipitis Yeast. J. Chem. Technol. Biotechnol. 2008, 84 (4), 604–610. doi:10.1002/jctb.2088.
  • Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological Approaches to Tackle Heavy Metal Pollution: A Survey of Literature. J. Environ. Manag. 2018, 217, 56–70. doi:10.1016/j.jenvman.2018.03.077.
  • El-Naggar, N.E.-A.; El-khateeb, A.Y.; Ghoniem, A.A.; El-Hersh, M.S.; Saber, W.I.A. Innovative Low-Cost Biosorption Process of Cr6+by Pseudomonas Alcaliphila NEWG-2. Sci. Rep. 2020, 10 (1). doi:10.1038/s41598-020-70473-5.
  • Tekerlekopoulou, A.G.; Tsiflikiotou, M.; Akritidou, L.; Viennas, A.; Tsiamis, G.; Pavlou, S.; Bourtzis, K.; Vayenas, D.V. Modelling of Biological Cr(VI) Removal in Draw-Fill Reactors Using Microorganisms in Suspended and Attached Growth Systems. Water Res. 2013, 47 (2), 623–636. doi:10.1016/j.watres.2012.10.034.
  • Humphries, A.C.; Nott, K.P.; Hall, L.D.; Macaskie, L.E. Reduction of Cr(VI) by Immobilized Cells of Desulfovibrio Vulgaris NCIMB 8303 and Microbacterium Sp. NCIMB 13776. Biotechnol. Bioeng. 2005, 90 (5), 589–596. doi:10.1002/bit.20450.
  • Li, M.; Gao, X.; Li, C.; Yang, C.; Fu, C.; Liu, J.; Wang, R.; Chen, L.; Lin, J.; Liu, X.; Lin, J.; Pang, X. Isolation and Identification of Chromium Reducing Bacillus Cereus Species from Chromium-Contaminated Soil for the Biological Detoxification of Chromium. Int. J. Environ. Res. Public Health 2020, 17 (6), 2118. doi:10.3390/ijerph17062118.
  • Ibrahim, A.S.S.; El-Tayeb, M.A.; Elbadawi, Y.B.; Al-Salamah, A.A.; Antranikian, G. Hexavalent Chromate Reduction by Alkaliphilic Amphibacillus Sp. KSUCr3 Is Mediated by Copper-Dependent Membrane-Associated Cr(VI) Reductase. Extremophiles 2012, 16 (4), 659–668. doi:10.1007/s00792-012-0464-x.
  • Liu, Z.; Wu, Y.; Lei, C.; Liu, P.; Gao, M. Chromate Reduction by a Chromate-Resistant Bacterium, Microbacterium Sp. World J. Microbiol. Biotechnol. 2011, 28 (4), 1585–1592. doi:10.1007/s11274-011-0962-5.
  • Henson, M.W.; Santo Domingo, J.W.; Kourtev, P.S.; Jensen, R.V.; Dunn, J.A.; Learman, D.R. Metabolic and Genomic Analysis Elucidates Strain-Level Variation inMicrobacterium Spp.Isolated from Chromate Contaminated Sediment. PeerJ. 2015, 3, e1395. doi:10.7717/peerj.1395.
  • P.; N, P.; B.; L, M. Chromate Reduction and 16S rRNA Identification of Bacteria Isolated from a Cr(VI)-Contaminated Site. Appl. Microbiol. Biotechnol. 2001, 57 (1–2), 257–261. doi:10.1007/s002530100758.
  • Ahemad, M. Enhancing Phytoremediation of Chromium-Stressed Soils through Plant-Growth-Promoting Bacteria. Journal of Genetic Engineering and Biotechnology 2015, 13 (1), 51–58. doi:10.1016/j.jgeb.2015.02.001.
  • Kubrak, O.I.; Lushchak, O.V.; Lushchak, J.V.; Torous, I.M.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Chromium Effects on Free Radical Processes in Goldfish Tissues: Comparison of Cr(III) and Cr(VI) Exposures on Oxidative Stress Markers, Glutathione Status and Antioxidant Enzymes. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 2010, 152 (3), 360–370. doi:10.1016/j.cbpc.2010.06.003.
  • Kumar, M.S.; Praveenkumar, R.; Ilavarasi, A.; Rajeshwari, K.; Thajuddin, N. Biochemical Changes of Fresh Water Cyanobacteria Dolichospermum Flos-Aquae NTMS07 to Chromium-Induced Stress with Special Reference to Antioxidant Enzymes and Cellular Fatty Acids. Bull. Environ. Contam. Toxicol. 2013, 90 (6), 730–735. doi:10.1007/s00128-013-0984-9.
  • Singh, V.; Mishra, V. Microbial Removal of Cr (VI) by a New Bacterial Strain Isolated from the Site Contaminated with Coal Mine Effluents. Journal of Environmental Chemical Engineering 2021, 9 (5), 106279. doi:10.1016/j.jece.2021.106279.
  • Ilias, M.; Rafiqullah, I.M.; Debnath, B.C.; Mannan, K.S.B.; Mozammel Hoq, M. Isolation and Characterization of Chromium(VI)-Reducing Bacteria from Tannery Effluents. Indian J. Microbiol. 2011, 51 (1), 76–81. doi:10.1007/s12088-011-0095-4.
  • Kabir, M.M.; Fakhruddin, A.N.M.; Chowdhury, M.A.Z.; Pramanik, M.K.; Fardous, Z. Isolation and Characterization of Chromium(VI)-Reducing Bacteria from Tannery Effluents and Solid Wastes. World J. Microbiol. Biotechnol. 2018, 34 (9). doi:10.1007/s11274-018-2510-z.
  • Zahoor, A.; Rehman, A. Isolation of Cr(VI) Reducing Bacteria from Industrial Effluents and Their Potential Use in Bioremediation of Chromium Containing Wastewater. J. Environ. Sci. 2009, 21 (6), 814–820. doi:10.1016/s1001-0742(08)62346-3.
  • Wang, X.; Zhang, Y.; Sun, X.; Jia, X.; Liu, Y.; Xiao, X.; Gao, H.; Li, L. Efficient Removal of Hexavalent Chromium from Water by Bacillus Sp. Y2-7 with Production of Extracellular Polymeric Substances. Environ. Technol. 2023, 1–11. doi:10.1080/09593330.2023.2185817.
  • Baldiris, R.; Acosta-Tapia, N.; Montes, A.; Hernández, J.; Vivas-Reyes, R. Reduction of Hexavalent Chromium and Detection of Chromate Reductase (ChrR) in Stenotrophomonas Maltophilia. Molecules 2018, 23 (2), 406. doi:10.3390/molecules23020406.
  • Wang, S.; Zhang, L.; Xia, Z.; Roy, A.; Chang, D.W.; Baek, J.; Dai, L. BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2012, 51 (17), 4209–4212. doi:10.1002/anie.201109257.
  • Donati, E.; Oliver, C.; Curutchet, G. Reduction of Chromium (VI) by the Indirect Action of Thiobacillus Thioparus. Braz. J. Chem. Eng. 2003, 20 (1), 69–73. doi:10.1590/s0104-66322003000100013.
  • Somasundaram, V.; Philip, L.; Bhallamudi, S.M. Experimental and Mathematical Modeling Studies on Cr(VI) Reduction by CRB, SRB and IRB, Individually and in Combination. J. Hazard. Mater. 2009, 172 (2–3), 606–617. doi:10.1016/j.jhazmat.2009.07.043.
  • Puzon, G.J.; Petersen, J.N.; Roberts, A.G.; Kramer, D.M.; Xun, L. A Bacterial Flavin Reductase System Reduces Chromate to a Soluble Chromium(III)–NAD+ Complex. Biochem. Biophys. Res. Commun. 2002, 294 (1), 76–81. doi:10.1016/s0006-291x(02)00438-2.
  • Alam, M.Z.; Malik, A. Chromate Resistance, Transport and Bioreduction by Exiguobacterium Sp. ZM-2 Isolated from Agricultural Soil Irrigated with Tannery Effluent. J. Basic Microbiol. 2008, 48 (5), 416–420. doi:10.1002/jobm.200800046.
  • Xu, W.H.; Liu, Y.G.; Zeng, G.M.; Li, X.; Zhang, W. Promoting Influence of Organic Carbon Source on Chromate Reduction by Bacillus Sp. Adv. Mat. Res. 2012, 610–613, 1789–1794. doi:10.4028/www.scientific.net/amr.610-613.1789.
  • Ngwenya, N.; Chirwa, E.M.N. Biological Removal of Cationic Fission Products from Nuclear Wastewater. Water Sci. Technol. 2011, 63 (1), 124–128. doi:10.2166/wst.2011.021.
  • Ahemad, M. Bacterial Mechanisms for Cr(VI) Resistance and Reduction: An Overview and Recent Advances. Folia Microbiol. 2014, 59 (4), 321–332. doi:10.1007/s12223-014-0304-8.
  • Loryuenyong, V.; Jarunsak, N.; Chuangchai, T.; Buasri, A. The Photocatalytic Reduction of Hexavalent Chromium by Controllable Mesoporous Anatase TiO2Nanoparticles. Advances in Materials Science and Engineering 2014, 2014, 1–8. doi:10.1155/2014/348427.
  • Cheung, K.H.; Gu, J.-D. Chromate Reduction by Bacillus Megaterium TKW3 Isolated from Marine Sediments. World J. Microbiol. Biotechnol. 2005, 21 (3), 213–219. doi:10.1007/s11274-004-3619-9.
  • Rahman, Z.; Thomas, L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front. Microbiol. 2021, 11, doi:10.3389/fmicb.2020.619766.
  • Ibrahim, A.S.S.; El-Tayeb, M.A.; Elbadawi, Y.B.; Al-Salamah, A.A.; Antranikian, G. Hexavalent Chromate Reduction by Alkaliphilic Amphibacillus Sp. KSUCr3 Is Mediated by Copper-Dependent Membrane-Associated Cr(VI) Reductase. Extremophiles 2012, 16 (4), 659–668. doi:10.1007/s00792-012-0464-x.
  • Ackerley, D.F.; Gonzalez, C.F.; Park, C.H.; Blake, R.; Keyhan, M.; Matin, A. Chromate-Reducing Properties of Soluble Flavoproteins from Pseudomonas Putida and Escherichia Coli. Appl. Environ. Microbiol. 2004, 70 (2), 873–882. doi:10.1128/aem.70.2.873-882.2004.
  • Archana; Jaitly, A.K. Analysis of Trace Metals in Underground Drinking Water of Bareilly. Invertis Journal of Renewable Energy 2016, 6 (2), 106. doi:10.5958/2454-7611.2016.00014.x.
  • Agnello, A.C.; Bagard, M.; van Hullebusch, E.D.; Esposito, G.; Huguenot, D. Comparative Bioremediation of Heavy Metals and Petroleum Hydrocarbons Co-Contaminated Soil by Natural Attenuation, Phytoremediation, Bioaugmentation and Bioaugmentation-Assisted Phytoremediation. Sci. Total Environ. 2016, 563–564, 693–703. doi:10.1016/j.scitotenv.2015.10.061.
  • Ogbo, E.M.; Okhuoya, J.A. Bio-Absorption of Some Heavy Metals by Pleurotus Tuber-Regium Fr. Singer (An Edible Mushroom) from Crude Oil Polluted Soils Amended with Fertilizers and Cellulosic Wastes. Int. J. Soil Sci. 2010, 6 (1), 34–48. doi:10.3923/ijss.2011.34.48.
  • Hlihor, R.M.; Roşca, M.; Drăgoi, E.N.; Simion, I.M.; Favier, L.; Gavrilescu, M. New Insights into the Application of Fungal Biomass for Chromium(VI) Bioremoval from Aqueous Solutions Using Design of Experiments and Differential Evolution Based Neural Network Approaches. Chem. Eng. Res. Des. 2023, 190, 233–254. doi:10.1016/j.cherd.2022.12.024.
  • Cárdenas-González, J.F.; Acosta-Rodríguez, I. Hexavalent Chromium Removal by aPaecilomycessp. Fungal Strain Isolated from Environment. Bioinorg. Chem. Appl. 2010, 2010, 1–6. doi:10.1155/2010/676243.
  • Sharma, S.; Adholeya, A. Detoxification and Accumulation of Chromium from Tannery Effluent and Spent Chrome Effluent by Paecilomyces Lilacinus Fungi. Int. Biodeterior. Biodegrad. 2011, 65 (2), 309–317. doi:10.1016/j.ibiod.2010.12.003.
  • Zapana-Huarache, S.V.; Romero-Sánchez, C.K.; Gonza, A.P.D.; Torres-Huaco, F.D.; Rivera, A.M.L. Chromium (VI) Bioremediation Potential of Filamentous Fungi Isolated from Peruvian Tannery Industry Effluents. Braz. J. Microbiol. 2019, 51 (1), 271–278. doi:10.1007/s42770-019-00209-9.
  • Rivera-Martínez, E.; Cárdenas-González, J.F.; Martínez-Juárez, V.M.; Acosta-Rodríguez, I. Remoción de Cromo (VI) Por Una Cepa de Aspergillus Niger Resistente a Cromato. Información tecnológica 2015, 26 (4), 13–20. doi:10.4067/s0718-07642015000400003.
  • Samuel, M.S.; Abigail, M.; Ramalingam, C. Biosorption of Cr(VI) by Ceratocystis Paradoxa MSR2 Using Isotherm Modelling, Kinetic Study and Optimization of Batch Parameters Using Response Surface Methodology. PLoS One 2015, 10 (3), e0118999. doi:10.1371/journal.pone.0118999.
  • Zheng, S.; Li, C.; Ng, T.B.; Wang, H.X. A Lectin with Mitogenic Activity from the Edible Wild Mushroom Boletus Edulis. Process Biochem. 2007, 42 (12), 1620–1624. doi:10.1016/j.procbio.2007.09.004.
  • Vaseem, H.; Singh, V.K.; Singh, M.P. Heavy Metal Pollution Due to Coal Washery Effluent and Its Decontamination Using a Macrofungus, Pleurotus Ostreatus. Ecotoxicol. Environ. Saf. 2017, 145, 42–49. doi:10.1016/j.ecoenv.2017.07.001.
  • Gadd, G.M. Geomycology: Biogeochemical Transformations of Rocks, Minerals, Metals and Radionuclides by Fungi, Bioweathering and Bioremediation. Mycol. Res. 2007, 111 (1), 3–49. doi:10.1016/j.mycres.2006.12.001.
  • Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste. Molecules 2020, 25 (12), 2811. doi:10.3390/molecules25122811.
  • Kumar, A.; Chandra, R. Ligninolytic Enzymes and Its Mechanisms for Degradation of Lignocellulosic Waste in Environment. Heliyon 2020, 6 (2), e03170. doi:10.1016/j.heliyon.2020.e03170.
  • Hestbjerg, H.; Willumsen, P.A.; Christensen, M.; Andersen, O.; Jacobsen, C.S. Bioaugmentation of Tar-contaminated Soils under Field Conditions Using Pleurotus Ostreatus Refuse from Commercial Mushroom Production. Environ. Toxicol. Chem. 2003, 22 (4), 692–698. doi:10.1002/etc.5620220402.
  • Kapahi, M.; Sachdeva, S. Mycoremediation Potential of Pleurotus Species for Heavy Metals: A Review. Bioresources and Bioprocessing 2017, 4 (1). doi:10.1186/s40643-017-0162-8.
  • Akhtar, F.Z.; Archana, K.M.; Krishnaswamy, V.G.; Rajagopal, R. . Remediation of Heavy Metals (Cr, Zn) Using Physical, Chemical and Biological Methods: A Novel Approach. SN Applied Sciences 2020, 2 (2). doi:10.1007/s42452-019-1918-x.
  • Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. npj Clean Water 2021, 4 (1), 22. doi:10.1038/s41545-021-00127-0.
  • Sundarraj, S.; Sudarmani, D.N.P.; Samuel, P.; Sevarkodiyone, S.P. Bioremediation of Hexavalent Chromium by Transformation ofEscherichia coliDH5α with Chromate Reductase (ChrR) Genes ofPseudomonas Putidaisolated from Tannery Effluent. J. Appl. Microbiol. 2022, 134 (1), doi:10.1093/jambio/lxac019.
  • Singh, V.; Singh, N.; Rai, S.N.; Kumar, A.; Singh, A.K.; Singh, M.P.; Sahoo, A.; Shekhar, S.; Vamanu, E.; Mishra, V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 2023, 11 (2), 147. doi:10.3390/toxics11020147.
  • Singh, V.; Singh, J.; Singh, N.; Rai, S.N.; Verma, M.K.; Verma, M.; Singh, V.; Chivate, M.S.; Bilal, M.; Mishra, V. Simultaneous Removal of Ternary Heavy Metal Ions by a Newly Isolated Microbacterium Paraoxydans Strain VSVM IIT(BHU) from Coal Washery Effluent. BioMetals 2022, 36 (4), 829–845. doi:10.1007/s10534-022-00476-4.
  • Ahmed, G.; Jamal, F.; Tiwari, R.K.; Singh, V.; Rai, S.N.; Chaturvedi, S.K.; Pandey, K.; Singh, S.K.; Kumar, A.; Narayan, S.; Vamanu, E. Arsenic Exposure to Mouse Visceral Leishmaniasis Model through Their Drinking Water Linked to the Disease Exacerbation via Modulation in Host Protective Immunity: A Preclinical Study. Sci. Rep. 2023, 13 (1), doi:10.1038/s41598-023-48642-z.
  • Singh, V.; Ahmed, G.; Vedika, S.; Kumar, P.; Chaturvedi, S.K.; Rai, S.N.; Vamanu, E.; Kumar, A. Toxic Heavy Metal Ions Contamination in Water and Their Sustainable Reduction by Eco-Friendly Methods: Isotherms, Thermodynamics and Kinetics Study. Sci. Rep. 2024, 14 (1), doi:10.1038/s41598-024-58061-3.
  • Singh, V.; Singh, N.; Verma, M.; Kamal, R.; Tiwari, R.; Sanjay Chivate, M.; Rai, S.N.; Kumar, A.; Singh, A.; Singh, M.P.; Vamanu, E.; Mishra, V. Hexavalent-Chromium-Induced Oxidative Stress and the Protective Role of Antioxidants against Cellular Toxicity. Antioxidants 2022, 11 (12), 2375. doi:10.3390/antiox11122375.
  • Singh, N.; Singh, V.; Rai, S.N.; Vamanu, E.; Singh, M.P. Metagenomic Analysis of Garden Soil-Derived Microbial Consortia and Unveiling Their Metabolic Potential in Mitigating Toxic Hexavalent Chromium. Life 2022, 12 (12), 2094. doi:10.3390/life12122094.
  • Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A Comprehensive Review on Conventional and Biological-Driven Heavy Metals Removal from Industrial Wastewater. Environmental Advances 2022, 7, 100168. doi:10.1016/j.envadv.2022.100168.
  • Yadav, M.; Singh, G.; Jadeja, R.N. Physical and Chemical Methods for Heavy Metal Removal. Pollutants and Water Management 2021, 377–397. doi:10.1002/9781119693635.ch15.
  • Staszak, K.; Regel-Rosocka, M. Removing Heavy Metals: Cutting-Edge Strategies and Advancements in Biosorption Technology. Materials. (Basel) 2024, 17 (5), 1155. doi:10.3390/ma17051155.
  • Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 2021, 4, 36. doi:10.1038/s41545-021-00127-0.
  • Singh, V.; Mishra, V. Sustainable reduction of Cr (VI) and its elemental mapping on chitosan coated citrus limetta peels biomass in synthetic wastewater. Sep. Sci. Technol. 2021, 57, 1609–1626.