499
Views
0
CrossRef citations to date
0
Altmetric
Review

Effects of Healthcare Technologies on the Promotion of Physical Activities in Older Persons: A Systematic Review

, , ORCID Icon, , , ORCID Icon, , & ORCID Icon show all

References

  • Ciccarelli M, Borgogni A, Capelli G. The relationship between physical activity, elderly and technologies: a literature review. In: Novak D, Antala B, Knjaz D, editors. Physical Education and New Technologies. Zagreb: Croatian Kinesiology Association; 2016. p. 41–50.
  • World Health Organization. (2021). Ageing and health. Retrieved from World Health Organization: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
  • Langhammer B, Bergland A, Rydwik E. The importance of physical activity exercise among older people. BioMed Res Int. 2018;2018:7856823. doi:10.1155/2018/7856823.
  • Kwan RYC, Salihu D, Lee PH, Tse M, Cheung DSK, Roopsawang I, Choi KS. The effect of e-health interventions promoting physical activity in older people: a systematic review and meta-analysis. Eur Rev Aging Phys Act. 2020;17(1):7. doi:10.1186/s11556-020-00239-5.
  • World Health Organization. Physical activity. 2021. https://www.who.int/health-topics/physical-activity#tab=tab_1
  • Aslam A, van Luenen S, Aslam S, van Bodegom D, Chavannes NH. A systematic review on the use of mHealth to increase physical activity in older people. Clin eHealth. 2020;3:31–39. doi:10.1016/j.ceh.2020.04.002.
  • World Health Organization. (2020). Physical activity. Retrieved from World Health Organization: https://www.who.int/news-room/fact-sheets/detail/physical-activity
  • Boughton J (2017). Technology is not friendly to the elderly. Retrieved from MedPage Today’s: Kevin MD: https://www.kevinmd.com/2017/11/technology-not-friendly-elderly.html
  • Harpert J (2019). 7 new tech devices for elder care that help seniors live happier, healthier lives. Retrieved from CNBC: Tech Drivers: https://www.cnbc.com/2019/09/12/7-new-tech-devices-for-that-help-seniors-live-happier-healthier-lives.html#:~:text=New%20devices%20that%20use%20VR,cloud%2Denabled%20fall%20detection%20watches .
  • Kappen DL, Mirza-Babaei P, Nacke LE. Older adults’ physical activity and exergames: a systematic review. Int J Hum Comput Interact. 2019;35(2):140–67. doi:10.1080/10447318.2018.1441253.
  • Vargemidis D, Gerling K, Spiel K, Abeele VV, Geurts L. Wearable Physical Activity Tracking Systems for Older Adults—A Systematic Review. ACM Trans Comput Healthcare. 2020;1(4):1–37. doi:10.1145/3402523.
  • Yerrakalva D, Yerrakalva D, Hajna S, Griffin S. Effects of Mobile Health App Interventions on Sedentary Time, Physical Activity, and Fitness in Older Adults: systematic Review and Meta-Analysis. J Med Internet Res. 2019;21(11):e14343. doi:10.2196/14343.
  • Aslam AS, Luenen SV, Aslam S, Bodegom DV, Chavannes NH. A systematic review on the use of mHealth to increase physical activity in older people. Clin eHealth. 2020;3:31–39. doi:10.1016/j.ceh.2020.04.002.
  • World Health Organization. (2022). Health technology assessment. Retrieved from World Health Organization: https://www.euro.who.int/en/health-topics/Health-systems/health-technologies-and-medicines/policy-areas/health-technology-assessment
  • Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi:10.1186/2046-4053-4-1.
  • Mayer AH, Costa CA, Righi RD. Electronic health records in a Blockchain: a systematic review. Health Informatics J. 2020;26(2):1273–88. doi:10.1177/1460458219866350.
  • Tedesco S, Sica M, Ancillao A, Timmons S, Barton J, O’Flynn B. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PloS One. 2019;14(5):e0216891. doi:10.1371/journal.pone.0216891.
  • Keppler AM, Nuritidinow T, Mueller A, Hoefling H, Schieker M, Clay I, Böcker W, Fürmetz J. Validity of accelerometry in step detection and gait speed measurement in orthogeriatric patients. PloS One. 2019;14(8):e0221732. doi:10.1371/journal.pone.0221732.
  • Trumpf R, Zijlstra W, Haussermann P, Fleiner T. Quantifying habitual physical activity and sedentariness in older adults-different outcomes of two simultaneously body-worn motion sensor approaches and a self-estimation. Sensors. 2020;20(7):1877. doi:10.3390/s20071877.
  • Coluzzi D, Rivolta MW, Mastropietro A, Porcelli S, Mauri ML, Civiello MTL, Denna E, Rizzo G, Sassi R. Design and validation of a minimal complexity algorithm for stair step counting. Computers. 2020;9(2):31. doi:10.3390/computers9020031.
  • Geraedts HAE, Zijlstra W, Zhang W, Spoorenberg SLW, Báez M, Far IK, Baldus H, Stevens M. A home-based exercise program driven by tablet application and mobility monitoring for frail older adults: feasibility and practical implications. Prev Chronic Dis. 2017;14:E12. doi:10.5888/pcd14.160227.
  • Razjouyan J, Naik AD, Horstman MJ, Kunik ME, Amirmazaheri M, Zhou H, Sharafkhaneh A, Najafi B. Wearable sensors and the assessment of frailty among vulnerable older adults: an observational cohort study. Sensors. 2018;18(5):1336. doi:10.3390/s18051336.
  • Zhang W, Schwenk M, Mellone S, Paraschiv-Ionescu A, Vereijken B, Pijnappels M, Mikolaizak AS, Boulton E, Jonkman NH, Maier AB, et al. Complexity of daily physical activity is more sensitive than conventional metrics to assess functional change in younger older adults. Sensors. 2018;18(7):2032. doi:10.3390/s18072032.
  • Cota T, Ishitani L, Vieira N. Mobile game design for the elderly: a study with focus on the motivation to play. Comput Human Behav. 2015;51:96–105. doi:10.1016/j.chb.2015.04.026.
  • Lauzé M, Martel DD, Agnoux A, Sirois MJ, Émond M, Daoust R, Aubertin-Leheudre M. Feasibility, acceptability and effects of a home-based exercise program using a gerontechnology on physical capacities after a minor injury in community-living older adults: a pilot study. J Nutr Health Aging. 2018;22(1):16–25. doi:10.1007/s12603-017-0938-8.
  • Valiani V, Lauzé M, Martel D, Pahor M, Manini TM, Anton S, Aubertin-Leheudre M. A new adaptive home-based exercise technology among older adults living in nursing home: a pilot study on feasibility, acceptability and physical performance. J Nutr Health Aging. 2017;21(7):819–24. doi:10.1007/s12603-016-0820-0.
  • Wullems JA, Verschueren S, Degens H, Morse CI, Onambélé GL. Performance of thigh-mounted triaxial accelerometer algorithms in objective quantification of sedentary behaviour and physical activity in older adults. PloS One. 2017;12(11):e0188215. doi:10.1371/journal.pone.0188215.
  • Le Hello C, Trombert B, Morel A, Chieh A, Brouard B, Boissier C. Performance analysis of walking of 10,000 regular users of a connected activity tracker. J Med Vasc. 2018;43(4):231–37. doi:10.1016/j.jdmv.2018.04.001.
  • Ajerla D, Mahfuz S, Zulkernine F. A real-time patient monitoring framework for fall detection. Wirel Commun Mob Comput. 2019:9507938. doi:10.1155/2019/9507938.
  • Hu B, Dixon PC, Jacobs JV, Dennerlein JT, Schiffman JM. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. J Biomech. 2018;71:37–42. doi:10.1016/j.jbiomech.2018.01.005.
  • Bao T, Carender WJ, Kinnaird C, Barone VJ, Peethambaran G, Whitney SL, Kabeto M, Seidler RD, Sienko KH. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study. J Neuroeng Rehabil. 2018;15(1):5. doi:10.1186/s12984-017-0339-6.
  • Danielsen A, Olofsen H, Bremdal BA. Increasing fall risk awareness using wearables: a fall risk awareness protocol. J Biomed Inform. 2016;63:184–94. doi:10.1016/j.jbi.2016.08.016.
  • Mugueta-Aguinaga I, Garcia-Zapirain B. Frailty level monitoring and analysis after a pilot six-week randomized controlled clinical trial using the FRED Exergame including Biofeedback supervision in an elderly day care centre. Int J Environ Res Public Health. 2019;16(5):729. doi:10.3390/ijerph16050729.
  • Pol MC, Ter Riet G, van Hartingsveldt M, Kröse B, Buurman BM. Effectiveness of sensor monitoring in a rehabilitation programme for older patients after Hip fracture: a three-arm stepped wedge randomised trial. Age Ageing. 2019;48(5):650–57. doi:10.1093/ageing/afz074.
  • Syed-Abdul S, Malwade S, Nursetyo AA, Sood M, Bhatia M, Barsasella D, Liu MF, Chang CC, Srinivasan K, Raja M, et al. Virtual reality among the elderly: a usefulness and acceptance study from Taiwan. BMC Geriatr. 2019;19(1):223. doi:10.1186/s12877-019-1218-8.
  • Manea V, Barrocal A, Wac K. Using consumer-friendly wearables to correlate patient and technology-reported physical activity in healthy seniors. Procedia Comput Sci. 2020;175:245–52. doi:10.1016/j.procs.2020.07.036.
  • Minvielle L, Audiffren J. NurseNet: monitoring elderly levels of activity with a piezoelectric floor. Sensors. 2019;19(18):3851. doi:10.3390/s19183851.
  • Bird ML, Clark B, Millar J, Whetton S, Smith S. Exposure to “Exergames” increases older adults’ perception of the usefulness of technology for improving health and physical activity: a pilot study. JMIR Serious Games. 2015;3(2):e8. doi:10.2196/games.4275.
  • Boj C, Díaz DJ, Portalés C, Casas S. Video games and outdoor physical activity for the elderly: applications of the HybridPLAY technology. Appl Sci. 2018;8(10):1912. doi:10.3390/APP8101912.
  • Awais M, Raza M, Ali K, Ali Z, Irfan M, Chughtai O, Khan I, Kim S, Ur Rehman M. An internet of things based bed-Egress alerting paradigm using wearable sensors in elderly care environment. Sensors. 2019;19(11):2498. doi:10.3390/s19112498.
  • Recio-Rodríguez JI, Lugones-Sanchez C, Agudo-Conde C, González-Sánchez J, Tamayo-Morales O, Gonzalez-Sanchez S, Fernandez-Alonso C, Maderuelo-Fernandez JA, Mora-Simon S, Gómez-Marcos MA, et al. Combined use of smartphone and smartband technology in the improvement of lifestyles in the adult population over 65 years: study protocol for a randomized clinical trial (EVIDENT-Age study). BMC Geriatr. 2019;19(1):19. doi:10.1186/s12877-019-1037-y.
  • Roberts LM, Jaeger BC, Baptista LC, Harper SA, Gardner AK, Jackson EA, Pekmezi D, Sandesara B, Manini TM, Anton SD, et al. Wearable technology to reduce sedentary behavior and CVD risk in older adults: a pilot randomized clinical trial. Clin Interv Aging. 2019;14:1817–28. doi:10.2147/CIA.S222655.
  • Buisseret F, Catinus L, Grenard R, Jojczyk L, Fievez D, Barvaux V, Dierick F. Timed up and go and six-minute walking tests with wearable inertial sensor: one step further for the prediction of the risk of fall in elderly nursing home people. Sensors. 2020;20(11):3207. doi:10.3390/s20113207.
  • Donovan F (2019). FDA clears 2 wearable devices for monitoring patient vital signs. Retrieved from https://hitinfrastructure.com/news/fda-clears-2-wearable-devices-for-monitoring-patient-vital-signs
  • Ponciano V, Pires IM, Ribeiro FR, Villasana MV, Crisóstomo R, Canavarro Teixeira M, Zdravevski E. Mobile computing technologies for health and mobility assessment: research design and results of the timed Up and Go test in older adults. Sensors. 2020;20(12):3481. doi:10.3390/s20123481.
  • Sawh M. ECG wearables: how they work and the best on the market. 2020. https://www.wareable.com/health-and-wellbeing/ecg-heart-rate-monitor-watch-guide-6508
  • Gomes D, Mendes-Moreira J, Sousa I, Silva J. Eating and drinking recognition in free-living conditions for triggering smart reminders. Sensors. 2019;19(12):2803. doi:10.3390/s19122803.
  • Panizzolo FA, Bolgiani C, Di Liddo L, Annese E, Marcolin G. Reducing the energy cost of walking in older adults using a passive Hip flexion device. J Neuroeng Rehabil. 2019;16(1):117. doi:10.1186/s12984-019-0599-4.
  • Liu L, Hou Y, He J, Lungu J, Dong R. An energy-efficient fall detection method based on FD-DNN for elderly people. Sensors. 2020;20(15):4192. doi:10.3390/s20154192.
  • Leuenberger K, Gonzenbach R, Wiedmer E, Luft A, Gassert R. Classification of stair ascent and descent in stroke patients. In Proceedings of the 11th International Conference on Wearable and Implantable Body Sensor Networks Workshops, Zurich, Switzerland, 2014 June 16–19).
  • Dubois A, Mouthon A, Sivagnanaselvam RS, Bresciani JP. Fast and automatic assessment of fall risk by coupling machine learning algorithms with a depth camera to monitor simple balance tasks. J Neuroeng Rehabil. 2019;16(1):71. doi:10.1186/s12984-019-0532-x.
  • Ponti M, Bet P, Oliveira CL, Castro PC. Better than counting seconds: identifying fallers among healthy elderly using fusion of accelerometer features and dual-task Timed Up and Go. PloS one. 2017;12(4):e0175559. doi:10.1371/journal.pone.0175559.
  • Htun SNN, Zin TT, Tin P. Image processing technique and hidden Markov Model for an elderly care monitoring system. J Imaging. 2020;6(6):49. doi:10.3390/jimaging6060049.
  • Moore K, O’Shea E, Kenny L, Barton J, Tedesco S, Sica M, Crowe C, Alamäki A, Condell J, Nordström A, et al. Older adults’ experiences with using wearable devices: qualitative systematic review and meta-synthesis. JMIR mHealth uHealth. 2021;9(6):e23832. doi:10.2196/23832.
  • McLeod S (2018a). Classical conditioning. Retrieved from https://www.simplypsychology.org/classical-conditioning.html
  • Boulton E, Hawley-Hague H, French DP, Mellone S, Zacchi A, Clemson L, Vereijken B, Todd C. Implementing behaviour change theory and techniques to increase physical activity and prevent functional decline among adults aged 61-70: the PreventIT project. Prog Cardiovasc Dis. 2019;62(2):147–56. doi:10.1016/j.pcad.2019.01.003.
  • McLeod S (2018b). Operant conditioning. Retrieved from https://www.simplypsychology.org/operant-conditioning.html
  • Taraldsen K, Mikolaizak AS, Maier AB, Boulton E, Aminian K, van Ancum J, Bandinelli S, Becker C, Bergquist R, Chiari L, et al. Protocol for the PreventIT randomised controlled trial feasibility study of a lifestyle-integrated exercise intervention in young older adults. BMJ Open. 2019;9(3):e023526. doi:10.1136/bmjopen-2018-023526.
  • Helbostad JL, Vereijken B, Becker C, Todd C, Taraldsen K, Pijnappels M, Aminian K, Mellone S. Mobile health applications to promote active and healthy ageing. Sensors. 2017;17(3):622. doi:10.3390/s17030622.
  • Casilari E, Álvarez-Marco M, García-Lagos F. A study of the use of gyroscope measurements in wearable fall detection systems. Symmetry. 2020;12(4):649. doi:10.3390/sym12040649.
  • Mercer K, Giangregorio L, Schneider E, Chilana P, Li M, Grindrod K. Acceptance of commercially available wearable activity trackers among adults aged over 50 and with chronic illness: a mixed-methods evaluation. JMIR Mhealth Uhealth. 2016;4(1):e7. doi:10.2196/mhealth.4225.
  • Mukhopadhyay SC. Wearable electronics sensors for safe and healthy living. Cham, Switzerland: Springer; 2015.
  • Spil T, Romijnders V, Sundaram D, Wickramasinghe N, Kijl B. Are serious games too serious? Diffusion of wearable technologies and the creation of a diffusion of serious games model. Int J Inf Manage. 2020:102202. doi:10.1016/j.ijinfomgt.2020.102202.
  • Gangadharbatla H. Biohacking: an exploratory study to understand the factors influencing the adoption of embedded technologies within the human body. Heliyon. 2020;6(5):e03931. doi:10.1016/j.heliyon.2020.e03931.
  • Kooiman TJM, Dontje ML, Sprenger SR, Krijnen WP, van der Schans CP, de Groot M. Reliability and validity of ten consumer activity trackers. BMC Sports Sci Med Rehabil. 2015;7(1):24. doi:10.1186/s13102-015-0018-5.
  • Sears T, Avalos E, Lawson S, McAlister I, Eschbach C, Bunn J. Wrist-worn PA trackers tend to underestimate steps during walking. Int J Exerc Sci. 2017;10:764–73.
  • Wong CK, Mentis HM, Kuber R. The bit doesn’t fit: evaluation of a commercial activity-tracker at slower walking speeds. Gait Posture. 2018;59:177–81. doi:10.1016/j.gaitpost.2017.10.010.
  • An HS, Jones GC, Kang SK, Welk GJ, Lee JM. How valid are wearable PA trackers for measuring steps? Eur J Sport Sci. 2017;17(3):360–68. doi:10.1080/17461391.2016.1255261.
  • Chu AHY, Shx N, Paknezhad M, Gauterin A, Koh D, Brown MS, Muller-Riemenschneider F. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS ONE. 2017;12(2):e0172535. doi:10.1371/journal.pone.0172535.
  • Imboden MT, Nelson MB, Kaminsky LA, Montoye AHK. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating PA and energy expenditure. Br J Sports Med. 2018;52(13):844–50. doi:10.1136/bjsports-2016-096990.
  • Tamura T, Huang M, Togawa T. Current developments in wearable thermometers. Adv Biomed Eng. 2018;7(1):88–99. doi:10.14326/abe.7.88.
  • Sharma P, Hui X, Zhou J, Conroy TB, Kan EC. Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate. NPJ Digit Med. 2020;3(1):98. doi:10.1038/s41746-020-0307-6.
  • Montgomery S (2021). How wearable devices are changing patient care: wearables caught on fast and their potential for clinical use is unlimited. Retrieved from https://www.workingnurse.com/articles/How-Wearable-Devices-Are-Changing-Patient-Care
  • Bresnick J (2014). How useful are wearable devices for patients, providers? https://healthitanalytics.com/news/useful-wearable-devices-patients-providers
  • Global Data. (2019). Wearable technology in healthcare. Report Code GDHCHT026. Retrieved from http://www.tauli.cat/institut/wp-content/uploads/2020/06/wearables-GlobalData_WearableTechnologyinHealthcare_220819.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.