711
Views
0
CrossRef citations to date
0
Altmetric
Articles

Spatiotemporal variations in surface albedo during the ablation season and linkages with the annual mass balance on Muz Taw Glacier, Altai Mountains

, , , , &
Pages 2126-2147 | Received 16 Aug 2022, Accepted 11 Nov 2022, Published online: 21 Nov 2022

References

  • Alexander, P., M. Tedesco, X. Fettweis, R. S. W. Van de Wal, C. J. P. P. Smeets, and M. R. Van den Broeke. 2014. “Assessing Spatio-Temporal Variability and Trends in Modelled and Measured Greenland Ice Sheet Albedo (2000–2013).” The Cryosphere 8: 2293–2312. https://doi.org/10.5194/tc-8-2293-2014.
  • Baccolo, G., E. Lokas, P. Gaca, D. Massabò, R. Ambrosini, R. S. Azzoni, C. Clason, et al. 2020. “Cryoconite: an Efficient Accumulator of Radioactive Fallout in Glacial Environments.” The Cryosphere 14: 657–672. https://doi.org/10.5194/tc-14-657-2020.
  • Bai, C., F. Wang, Y. Bi, L. Wang, C. X. Yue, S. Yang, and P. Wang. 2022. “Increased Mass Loss of Glaciers in the Sawir Mountains of Central Asia Between 1959 and 2021.” Remote Sensing 14: 5406. https://doi.org/10.3390/rs14215406.
  • Bippus, Gabriele.. 2011. Characteristics of Summer Snow Areas on Glaciers Observed by Means of Landsat Data: Correction Techniques for Optical Satellite Data.” PhD diss., University of Innsbruck.
  • Box, J. E., X. Fettweis, J. C. Stroeve, M. Tedesco, D. K. Hall, and K. Steffen. 2012. “Greenland Ice Sheet Albedo Feedback: Thermodynamics and Atmospheric Drivers.” The Cryosphere 6: 821–839. https://doi.org/10.5194/tc-6-821-2012.
  • Brun, F., M. Dumont, E. Berthier, M. F. Azam, J. M. Shea, P. Sigruey, A. Rabatel, and A. Ramanathan. 2015. “Seasonal Changes in Surface Albedo of Himalayan Glaciers from MODIS Data and Links with the Annual Mass Balance.” The Cryosphere 9 (1): 341–355. https://doi.org/10.5194/tc-9-341-2015.
  • Chang, J., N. Wang, Z. Li, and D. Yang. 2022. “Accelerated Shrinkage of Glaciers in the Altai Mountains from 2000 to 2020.” Frontiers in Earth Science 10: 919051. https://doi.org/10.3389/feart.2022.919051.
  • Chen, Y., G. Fang, H. Hao, and X. Wang. 2022. “Water use Efficiency Data from 2000 to 2019 in Measuring Progress Towards SDGs in Central Asia.” Big Earth Data 6 (1): 90–102. https://doi.org/10.1080/20964471.2020.1851891.
  • CMA-CCC (China Meteoritical Administration Climate Change Center). 2021. Blue Book on Climate Change in China. Beijing: Science Press.
  • Davaze, L., A. Rabatel, Y. Arnaud, P. Sigruey, D. Six, A. Letreguilly, and M. Dumont. 2018. “Monitoring Glacier Albedo as a Proxy to Derive Summer and Annual Surface Mass Balances from Optical Remote-Sensing Data.” The Cryosphere 12: 271–286. https://doi.org/10.5194/tc-12-271-2018.
  • Dowson, A. J., P. Sirguey, and N. J. Cullen. 2020. “Variability in Glacier Albedo and Links to Annual Mass Balance for the Gardens of Eden and Allah, Southern Alps, New Zealand.” The Cryosphere 14: 3425–3448. https://doi.org/10.5194/tc-14-3425-2020.
  • Dumont, M., J. Gardelle, P. Sirguey, A. Guillot, D. Six, A. Rabatel, and Y. Arnaud. 2012. “Linking Glacier Annual Mass Balance and Glacier Albedo Retrieved from MODIS Data.” The Cryosphere 6: 1527–1539. https://doi.org/10.5194/tc-6-1527-2012.
  • Ekstrand, S. 1996. “Landsat TM-Based Forest Damage Assessment: Correction for Topographic Effects.” Photogrammetic Engineering & Remote Sensing 62 (2): 151–162.
  • Fugazza, D., A. Senese, R. S. Azzoni, M. Maugeri, and G. A. Diolaiuti. 2016. “Spatial Distribution of Surface Albedo at the Forni Glacier (Stelvio National Park, Central Italian Alps).” Cold Regions Science and Technology 125: 128–137. https://doi.org/10.1016/j.coldregions.2016.02.006.
  • Ganey, G. Q., M. G. Loso, A. B. Burgess, and R. J. Dial. 2017. “The Role of Microbes in Snowmelt and Radiative Forcing on an Alaskan Icefield.” Nature Geoscience 10: 754–759. https://doi.org/10.1038/ngeo3027.
  • Greuell, W., and M. De Ruyter de Wildt. 1999. “Anisotropic Reflection of Melting Glacier Ice: Measurements and Parameterizations in Landsat TM Band 2 and 4.” Remote Sensing of Environment 70 (3): 265–277.
  • Greuell, W., C. H. Reijmer, and L. Oerlemans. 2002. “Narrowband-to-Broadband Albedo Conversion for Glacier Ice and Snow Based on Aircraft and Near-Surface Measurements.” Remote Sensing of Environment 82: 48–63.
  • Gunnarsson, A., S. M. Gardarsson, F. Pálsson, T. Jóhannesson, and Ó. G. B. Sveinsson. 2021. “Annual and Inter-Annual Variability and Trends of Albedo of Icelandic Glaciers.” The Cryosphere 15: 547–570. https://doi.org/10.5194/tc-15-547-2021.
  • Gurgiser, W., B. Marzeion, L. Nicholson, M. Ortner, and G. Kaser. 2013. “Modeling Energy and Mass Balance of Shallap Glacier, Peru.” The Cryosphere 7: 1787–1802. https://doi.org/10.5194/tc-7-1787-2013.
  • Hall, D. K., and G. A. Riggs. 2021a. MODIS/Aqua Snow Cover Daily L3 Global 500m SIN Grid, Version 61. [2002-2021]. Boulder, Colorado: NASA National Snow and Ice Data Center Distributed Active Archive Center.
  • Hall, D. K., and G. A. Riggs. 2021b. MODIS/Terra Snow Cover Daily L3 Global 500m SIN Grid, Version 61. [2000-2021]. Boulder, Colorado: NASA National Snow and Ice Data Center Distributed Active Archive Center.
  • Hock, R., and B. Holmgren. 2005. “A Distributed Surface Energy-Balance Model for Complex Topography and its Application to Storglaciären, Sweden.” Journal of Glaciology 51 (172): 25–36.
  • Huai, B., Z. Li, F. Wang, W. Wang, P. Wang, and K. Li. 2015. “Glacier Volume Estimation from Ice-Thickness Data, Applied to the Muz Taw Glacier, Sawir Mountains, China.” Environmental Earth Sciences 74 (3): 1861–1870. https://doi.org/10.1007/s12665-015-4435-2.
  • Huss, M., and R. Hock. 2018. “Global-scale Hydrological Response to Future Glacier Mass Loss.” Nature Climate Change 8: 135–140. https://doi.org/10.1038/s41558-017-0049-x.
  • Johnson, E., and S. Rupper. 2020. “An Examination of Physical Processes That Trigger the Albedo-Feedback on Glacier Surfaces and Implications for Regional Glacier Mass Balance Across High Mountain Asia.” Frontiers in Earth Science 8: 129. https://doi.org/10.3389/feart.2020.00129.
  • Jonsell, U., R. Hock, and B. Holmgren. 2003. “Spatial and Temporal Variations in Albedo on Storglaciären, Sweden.” Journal of Glaciology 49 (164): 59–68.
  • Kadota, T., and D. Gombo. 2007. “Recent Glacier Variations in Mongolia.” Annals of Glaciology 46: 185–188.
  • Klein, A. G., and J. Stroeve. 2002. “Development and Validation of a Snow Albedo Algorithm for the MODIS Instrument.” Annals of Glaciology 34: 45–52.
  • Klok, E. J., W. Greull, and J. Oerlemans. 2003. “Temporal and Spatial Variation of the Surface Albedo of Morteratschgletscher, Switzerland, as Derived from 12 Landsat Images.” Journal of Glaciology 49 (167): 491–502.
  • Klok, E. J., and J. Oerlemans. 2004. “Modelled Climate Sensitivity of the Mass Balance of Morteratschgletscher and its Dependence on Albedo Parameterization.” International Journal of Climatology 24: 231–245.
  • Kronenberg, M., M. Barandun, M. Hoelzle, M. Huss, D. Farinotti, E. Azisov, R. Usubaliev, A. Gafurov, D. Petrakov, and A. KääB. 2016. “Mass-balance Reconstruction for Glacier No. 354, Tien Shan, from 2003 to 2014.” Annals of Glaciology 57 (71): 92–102. https://doi.org/10.3189/2016AoG71A032.
  • Li, Y., S. Kang, J. Chen, Z. Hu, K. Wang, R. Paudyal, J. Liu, X. Wang, X. Qin, and M. Sillanpää. 2019. “Black Carbon in a Glacier and Snow Cover on the North-Eastern Tibetan Plateau: Concentrations, Radiative Forcing and Potential Source from Local Topsoil.” Science of The Total Environment 686 (10): 1030–1038. https://doi.org/10.1016/j.scitotenv.2019.05.469.
  • Lu, J., Y. Qiu, X. Wang, W. Liang, P. Xie, L. Shi, M. Menenti, and D. Zhang. 2020. “Constructing Dataset of Classified Drainage Areas Based on Surface Water-Supply Patterns in High Mountain Asia.” Big Earth Data 4 (3): 225–241. https://doi.org/10.1080/20964471.2020.1766180.
  • Lutz, S., A. M. Anesio, R. Raiswell, A. Edwards, R. Newton, F. Gill, and L. G. Benning. 2016. “The Biogeography of red Snow Microbiomes and Their Role in Melting Arctic Glaciers.” Nature Communications 7: 11968. https://doi.org/10.1038/ncomms11968.
  • Marshall, S. J., and K. Miller. 2020. “Seasonal and Interannual Variability of Melt-Season Albedo at Haig Glacier, Canadian Rocky Mountains.” The Cryosphere 14: 3249–3267. https://doi.org/10.5194/tc-14-3249-2020.
  • Masek, J. G., E. F. Vermote, N. E. Saleous, R. Wolfe, F. G. Hall, K. F. Huemmrich, F. Gao, J. Kutler, and T. K. Lim. 2006. “A Landsat Surface Reflectance Dataset for North America, 1990–2000.” IEEE Geoscience and Remote Sensing Letters 3 (1): 68–72. https://doi.org/10.1109/LGRS.2005.857030.
  • Mauro, B. D., F. Fava, L. Ferrero, R. Garzonio, G. Baccolo, B. Delmonte, and R. Colombo. 2015. “Mineral Dust Impact on Snow Radiative Properties in the European Alps Combining Ground, UAV, and Satellite Observations.” Journal of Geophysical Research: Atmospheres 120: 6080–6097. https://doi.org/10.1002/2015JD023287.
  • Ming, J., C. Xiao, F. Wang, Z. Li, and Y. Li. 2016. “Grey Tienshan Urumqi Glacier No.1 and Light-Absorbing Impurities.” Environmental Science and Pollution Research 23 (10): 9549–9558. https://doi.org/10.1007/s11356-016-6182-7.
  • Moustafa, S. E., A. K. Rennermalm, L. C. Smith, M. A. Miller, J. R. Mioduszewski, L. S. Koenig, M. G. Hom, and C. A. Shuman. 2015. “Multi-modal Albedo Distributions in the Ablation Area of the Southwestern Greenland Ice Sheet.” The Cryosphere 9: 905–923. https://doi.org/10.5194/tc-9-905-2015.
  • Naegeli, K., and M. Huss. 2017. “Sensitivity of Mountain Glacier Mass Balance to Changes in Bare-ice Albedo.” Annals of Glaciology 58(75py2): 119–129. https://doi.org/10.1017/aog.2017.25.
  • Naegeli, K., M. Huss, and M. Hoelzle. 2019. “Change Detection of Bare-ice Albedo in the Swiss Alps.” The Cryosphere 13: 397–412.
  • NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team. 2018. “ASTER Global Digital Elevation Model V003.” NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/ASTER/ASTGTM.003.
  • Oerlemans, J., R. H. Giesen, and M. R. Van Den Broeke. 2009. “Retreating Alpine Glaciers: Increased Melt Rates Due to Accumulation of Dust (Vadret da Morteratsch, Switzerland).” Journal of Glaciology 55 (192): 729–736.
  • Panagiotopoulos, F., M. Shahgedanova, A. Hannachi, and D. B. Stephenson. 2005. “Observed Trends and Teleconnections of the Siberian High: A Recently Declining Center of Action.” Journal of Climate 18: 1411–1422.
  • Paul, F., N. Barrand, S. Baumann, E. Berthier, T. Bolch, K. Casey, H. Frey, S. P. Joshi, V. Konovalov, R. Lebris, et al. 2013. “On the Accuracy of Glacier Outlines Derived from Remote-Sensing Data.” Annals of Glaciology 54 (63): 171–182. https://doi.org/10.3189/2013AoG63A296.
  • Reijmer, C. H., R. Bintanja, and W. Greuell. 2001. “Surface Albedo Measurements Over Snow and Blue Ice in Thematic Mapper Bands 2 and 4 in Dronning Maud Land, Antarctica.” Journal of Geophysical Research: Atmospheres 106 (D9): 9661–9672.
  • RGI. 2017. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. Colorado, AZ: Digital Media.
  • Roe, G. H., M. B. Baker, and F. Herla. 2017. “Centennial Glacier Retreat as Categorical Evidence of Regional Climate Change.” Nature Geoscience 10: 95–99. https://doi.org/10.1038/ngeo2863.
  • Ryan, J. C., A. Hubbard, M. Stibal, T. D. Irvine-Fynn, J. Cook, L. C. Smith, K. Cameron, and J. Box. 2018. “Dark Zone of the Greenland Ice Sheet Controlled by Distributed Biologically-Active Impurities.” Nature Communications 9: 1065. https://doi.org/10.1038/s41467-018-03353-2.
  • Schaefer, M., D. Fonseca-Gallardo, D. Farías-Barahona, and G. Casassa. 2020. “Surface Energy Fluxes on Chilean Glaciers: Measurements and Models.” The Cryosphere 14: 2545–2565. https://doi.org/10.5194/tc-14-2545-2020.
  • Shahgedanova, M., G. Nosenko, T. Khromova, and A. Muraveyev. 2010. “Glacier Shrinkage and Climatic Change in the Russian Altai from the mid-20th Century: An Assessment Using Remote Sensing and PRECIS Regional Climate Model.” Journal of Geophysical Research 115: D16107. https://doi.org/10.1029/2009JD012976.
  • Shuai, Y., L. Tuerhanjian, C. Shao, F. Gao, Y. Zhou, D. Xie, T. Liu, and N. Chu. 2020. “Re-understanding of Land Surface Albedo and Related Terms in Satellite-Based Retrievals.” Big Earth Data 4 (1): 45–67. https://doi.org/10.1080/20964471.2020.1716561.
  • Sirguey, P., H. Still, N. J. Cullen, M. Dumont, Y. Arnaud, and J. P. Conway. 2016. “Reconstructing the Mass Balance of Brewster Glacier, New Zealand, using MODIS-Derived Glacier-Wide Albedo.” The Cryosphere 10: 2465–2484. https://doi.org/10.5194/tc-10-2465-2016.
  • Su, B., C. Xiao, D. Chen, Y. Huang, Y. Che, H. Zhao, M. Zou, R. Guo, X. Wang, X. Li, et al. 2022. “Glacier Change in China Over Past Decades: Spatiotemporal Patterns and Influencing Factors.” Earth-Science Reviews 226: 103926. https://doi.org/10.1016/j.earscirev.2022.103926.
  • Surazakov, A. B., V. B. Aizen, E. M. Aizen, and S. A. Nikitin. 2007. “Glacier Changes in the Siberian Altai Mountains, Ob River Basin, (1952–2006) Estimated with High Resolution Imagery.” Environmental Research Letters 2 (4): 045017. https://doi.org/10.1088/1748-9326/2/4/045017.
  • Takeuchi, N. 2009. “Temporal and Spatial Variations in Spectral Reflectance and Characteristics of Surface Dust on Gulkana Glacier, Alaska Range.” Journal of Glaciology 55 (192): 701–709.
  • Takeuchi, N., R. Dial, S. Kohshima, T. Segawa, and J. Uetake. 2006. “Spatial Distribution and Abundance of red Snow Algae on the Harding Icefield, Alaska Derived from a Satellite Image.” Geophysical Research Letters 33: L21502. https://doi.org/10.1029/2006GL027819.
  • Tedesco, M., S. Doherty, X. Fettweis, P. Alexander, J. Jeyavinoth, and J. Stroeve. 2016. “The Darkening of the Greenland ice Sheet: Trends, Drivers, and Projections (1981–2100).” The Cryosphere 10: 477–496. https://doi.org/10.5194/tc-10-477-2016.
  • Vermote, E., C. Justice, M. Claverie, and B. Franch. 2016. “Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product.” Remote Sensing of Environment 185: 46–56. https://doi.org/10.1016/j.rse.2016.04.008.
  • Wang, Z., A. M. Erb, C. B. Schaaf, Q. Sun, Y. Liu, Y. Yang, Y. Shuai, K. A. Casey, and M. O. Román. 2016. “Early Spring Post-Fire Snow Albedo Dynamics in High Latitude Boreal Forests Using Landsat-8 OLI Data.” Remote Sensing of Environment 185: 71–83. https://doi.org/10.1016/j.rse.2016.02.059.
  • Wang, F., C. Xu, Z. Li, M. N. Anjum, and L. Wang. 2018. “Applicability of an Ultra-Long-Range Terrestrial Laser Scanner to Monitor the Mass Balance of Muz Taw Glacier, Sawir Mountains, China.” Sciences in Cold and Arid Regions 10 (1): 47–54.
  • Wang, J., B. Ye, Y. Cui, X. He, and G. Yang. 2014. “Spatial and Temporal Variations of Albedo on Nine Glaciers in Western China from 2000 to 2011.” Hydrological Processes 28: 3454–3465. https://doi.org/10.1002/hyp.9883.
  • Wang, Y., J. Zhao, Z. Li, and M. Zhang. 2019. “Glacier Changes in the Sawuer Mountain during 1977–2017 and their Response to Climate Change.” [in Chinese.] Journal of Natural Resources 34 (4): 802–814.
  • Wei, J., S. Liu, J. Xu, W. Guo, W. Bao, D. Shangguan, and Z. Jiang. 2015. “Mass Loss from Glaciers in the Chinese Altai Mountains Between 1959 and 2008 Revealed Based on Historical Maps, SRTM, and ASTER Images.” Journal of Mountain Science 12 (2): 330–343. https://doi.org/10.1007/s11629-014-3175-1.
  • WGMS (World Glacier Monitoring Service). 2021. Global Glacier Change Bulletin No. 4 (2018–2019). Zurich, Switzerland. Publication Based on Database Version. https://doi.org/10.5904/wgms-fog-2021-05.
  • Xu, C., Z. Li, F. Wang, and J. Mu. 2021. “Spatio-temporal Changes of Mass Balance in the Ablation Area of the Muz Taw Glacier, Sawir Mountains, from Multi-Temporal Terrestrial Geodetic Surveys.” Remote Sensing 13: 1465. https://doi.org/10.3390/rs13081465.
  • Yang, D., E. Kang, and B. Felix. 1992. “Characteristics of Precipitation in the Source Area of the Urumqi River Basin.” [in Chinese.] Journal of Glaciology and Geocryology 14: 258–266.
  • Yang, M., X. Wang, G. Pang, G. Wan, and Z. Liu. 2019. “The Tibetan Plateau Cryosphere: Observations and Model Simulations for Current Status and Recent Changes.” Earth-Science Reviews 190: 353–369.
  • Yue, X., Z. Li, H. Li, F. Wang, and S. Jin. 2022. “Multi-Temporal Variations in Surface Albedo on Urumqi Glacier No.1 in Tien Shan, Under Arid and Semi-Arid Environment.” Remote Sensing 14: 808. https://doi.org/10.3390/rs14040808.
  • Yue, X., Z. Li, J. Zhao, J. Fan, N. Takeuchi, and L. Wang. 2020. “Variation in Albedo and its Relationship with Surface Dust at Urumqi Glacier No. 1 in Tien Shan, China.” Frontiers in Earth Science 8: 110. https://doi.org/10.3389/feart.2020.00110.
  • Yue, X., Z. Li, J. Zhao, H. Li, P. Wang, and L. Wang. 2021. “Changes in the End-of-Summer Snow Line Altitude of Summer-Accumulation-Type Glaciers in the Eastern Tien Shan Mountains from 1994 to 2016.” Remote Sensing 13: 1080. https://doi.org/10.3390/rs13061080.
  • Yue, X., J. Zhao, Z. Li, M. Zhang, J. Fan, L. Wang, and P. Wang. 2017. “Spatial and Temporal Variations of the Surface Albedo and Other Factors Influencing Urumqi Glacier No. 1 in Tien Shan, China.” Journal of Glaciology 63 (24): 899–911. https://doi.org/10.1017/jog.2017.57.
  • Zemp, M., M. Hoelzle, and W. Haeberli. 2009. “Six Decades of Glacier Mass-Balance Observations: A Review of the Worldwide Monitoring Network.” Annals of Glaciology 50 (50): 101–111.
  • Zemp, M., M. Huss, E. Thibert, N. Echert, R. McNabb, J. Huber, M. Barandun, H. Machguth, S. U. Nussbaumer, I. Gärtner-Roer, et al. 2019. “Global Glacier Mass Changes and Their Contributions to Sea-Level Rise from 1961 to 2016.” Nature 568: 382–386. https://doi.org/10.1038/s41586-019-1071-0.
  • Zhang, Y., H. Enomoto, T. Ohata, H. Kitabata, T. Kadota, and Y. Hirabayashi. 2017. “Glacier Mass Balance and its Potential Impacts in the Altai Mountains Over the Period 1990–2011.” Journal of Hydrology 553: 662–677.
  • Zhang, Y., T. Gao, S. Kang, D. Shangguan, and X. Luo. 2021. “Albedo Reduction as an Important Driver for Glacier Melting in Tibetan Plateau and its Surrounding Areas.” Earth-Science Reviews 220: 103735. https://doi.org/10.1016/j.earscirev.2021.103735.
  • Zhang, Y., T. Gao, S. Kang, M. Sprenger, S. Tao, W. Du, J. Yang, F. Wang, and W. Meng. 2020. “Effects of Black Carbon and Mineral Dust on Glacial Melting on the Muz Taw Glacier, Central Asia.” Science of the Total Environment 740: 140056. https://doi.org/10.1016/j.scitotenv.2020.140056.
  • Zhang, Z., L. Jiang, L. Liu, Y. Sun, and H. Wang. 2018. “Annual Glacier-Wide Mass Balance (2000-2016) of the Interior Tibetan Plateau Reconstructed from MODIS Albedo Products.” Remote Sensing 10: 1031. https://doi.org/10.3390/rs10071031.
  • Zheng, G., S. K. Allen, A. Bao, J. A. Ballesteros-Cánovas, M. Huss, G. Zhang, J. Li, Y. Yuan, L. Jiang, et al. 2021. “Increasing Risk of Glacial Lake Outburst Floods from Future Third Pole Deglaciation.” Nature Climate Change 11: 411–417. https://doi.org/10.1038/s41558-021-01028-3.