2,231
Views
2
CrossRef citations to date
0
Altmetric
Articles

An improved social force model (ISFM)-based crowd evacuation simulation method in virtual reality with a subway fire as a case study

ORCID Icon, , ORCID Icon, ORCID Icon, , , , & show all
Pages 1186-1204 | Received 16 Nov 2022, Accepted 25 Mar 2023, Published online: 05 Apr 2023

References

  • Bakar, N. A. A., M. A. Majid, and K. Adam. 2019. “Simulation and Modelling the Human Crowd Evacuation.” IOP Conference Series: Materials Science and Engineering 551: 0012038–0012038. doi:10.1088/1757-899X/551/1/012038.
  • Bourhim, E. M., and A. Cherkaoui. 2020. “Efficacy of Virtual Reality for Studying People's pre-Evacuation Behavior Under Fire.” International Journal of Human-Computer Studies 142: 102484. doi:10.1016/j.ijhcs.2020.102484.
  • Cagigas-Muñiz, D., F. Diaz-del-Rio, J. L. Sevillano-Ramos, and J. L. Guisado-Lizar. 2022. “Efficient Simulation Execution of Cellular Automata on GPU.” Simulation Modelling Practice and Theory 118: 102519. doi:10.1016/j.simpat.2022.102519.
  • Cao, S. C., W. G. Song, X. D. Liu, and N. Mu. 2014. “Simulation of Pedestrian Evacuation in a Room Under Fire Emergency.” Procedia Engineering 71: 403–409. doi:10.1016/j.proeng.2014.04.058.
  • Charalambopoulos, N., and A. C. Nearchou. 2021. “Ship Routing Using Genetic Algorithms.” Operations Research Forum 2 (3), doi:10.1007/S43069-021-00093-W.
  • Chen, M., and H. Lin. 2018. “Virtual Geographic Environments (VGEs): Originating from or Beyond Virtual Reality (VR)?.” International Journal of Digital Earth 11 (4): 329–333. doi:10.1080/17538947.2017.1419452.
  • Dang, P., J. Zhu, S. Pirasteh, W. Li, J. You, B. Xu, and C. Liang. 2021. “A Chain Navigation Grid Based on Cellular Automata for Large-Scale Crowd Evacuation in Virtual Reality.” International Journal of Applied Earth Observation and Geoinformation 103: 102507. doi:10.1016/j.jag.2021.102507.
  • Ding, N., T. Chen, Y. Zhu, and Y. Lu. 2021. “State-of-the-art High-Rise Building Emergency Evacuation Behavior.” Physica A: Statistical Mechanics and Its Applications 561: 125168. doi:10.1016/j.physa.2020.125168.
  • Fang, Z. M., W. G. Song, J. Zhang, and H. Wu. 2012. “A Multi-Grid Model for Evacuation Coupling with the Effects of Fire Products.” Fire Technology 48: 91–104. doi:10.1007/s10694-010-0173-x.
  • Feng, Z., V. A. González, R. Amor, R. Lovreglio, and G. Cabrera-Guerrero. 2018. “Immersive Virtual Reality Serious Games for Evacuation Training and Research: A Systematic Literature Review.” Computers & Education 127: 252–266. doi:10.1016/j.compedu.2018.09.002.
  • Guo, Y., J. Zhu, Y. Wang, J. Chai, W. Li, L. Fu, B. Xu, and Y. Gong. 2020. “A Virtual Reality Simulation Method for Crowd Evacuation in a Multiexit Indoor Fire Environment.” ISPRS International Journal of Geo-Information 9 (12): 750. doi:10.3390/ijgi9120750.
  • Gwynne, S., M. Amos, M. Kinateder, N. Benichou, K. Boyce, C. N. van Der Wal, and E. Ronchi. 2020. “The Future of Evacuation Drills: Assessing and Enhancing Evacuee Performance.” Safety Science 129: 104767. doi:10.1016/j.ssci.2020.104767.
  • Halik, Ł, and A. J. Kent. 2021. “Measuring User Preferences and Behaviour in a Topographic Immersive Virtual Environment (TopoIVE) of 2D and 3D Urban Topographic Data.” International Journal of Digital Earth 14 (12): 1835–1867. doi:10.1080/17538947.2021.1984595.
  • Hao, S. Q., H. W. Huang, Y. Yuan, and K. Yin. 2009. “Fire Evacuation Underground Space Based on Building EXODUS.” 2009 IEEE International Conference on Engineering Computation, Hong Kong, May, 186–188. doi:10.1109/ICEC.2009.31.
  • Helbing, D., and P. Molnar. 1995. “Social Force Model for Pedestrian Dynamics.” Physical Review E 51 (5): 4282. doi:10.1103/PhysRevE.51.4282.
  • Hosseini, O., M. Maghrebi, and M. F. Maghrebi. 2021. “Determining Optimum Staged-Evacuation Schedule Considering Total Evacuation Time, Congestion Severity and Fire Threats.” Safety Science 139: 105211. doi:10.1016/j.ssci.2021.105211.
  • Jeon, G., and W. Hong. 2009. “Characteristic Features of the Behavior and Perception of Evacuees from the Daegu Subway Fire and Safety Measures in an Underground Fire.” Journal of Asian Architecture and Building Engineering 8 (2): 415–422. doi:10.3130/jaabe.8.415.
  • Jiang, Y., Z. Li, and S. L. Cutter. 2021. “Social Distance Integrated Gravity Model for Evacuation Destination Choice.” International Journal of Digital Earth 14 (8): 1004–1018. doi:10.1080/17538947.2021.1915396.
  • Jin, B., J. Wang, Y. Wang, Y. Gu, and Z. Wang. 2020. “Temporal and Spatial Distribution of Pedestrians in Subway Evacuation Under Node Failure by Multi-Hazards.” Safety Science 127: 104695. doi:10.1016/j.ssci.2020.104695.
  • Ju, W., J. Wu, Q. Kang, J. Jiang, and Z. Xing. 2022. “Fire Risk Assessment of Subway Stations Based on Combination Weighting of Game Theory and TOPSIS Method.” Sustainability 14 (12): 7275. doi:10.3390/su14127275.
  • Kim, J. H., and Y. S. Ban. 2013. “A Study on Characteristics of Visual Fixation in an Evacuation Process Created via Virtual Reality-Focusing on Subway Evacuation Simulation.” Journal of the Architectural Institute of Korea Planning and Design 29 (9): 33–42. doi:10.5659/JAIK_PD.2013.29.9.33.
  • Kopsidas, A., and K. Kepaptsoglou. 2022. “Identification of Critical Stations in a Metro System: A Substitute Complex Network Analysis.” Physica A: Statistical Mechanics and its Applications 596: 127123. doi:10.1016/j.physa.2022.127123.
  • Li, J., and H. Zhang. 2022a. “Crowd Evacuation Simulation Research Based on Improved Reciprocal Velocity Obstacles (RVO) Model with Path Planning and Emotion Contagion.” Transportation Research Record: Journal of the Transportation Research Board 2676 (3): 740–757. doi:10.1177/03611981211056910.
  • Li, W., J. Zhu, L. Fu, Q. Zhu, Y. Guo, and Y. Gong. 2021a. “A rapid 3D reproduction system of dam-break floods constrained by post-disaster information.” Environmental Modelling & Software 139: 104994. doi:10.1016/j.envsoft.2021.104994.
  • Li, W., J. Zhu, L. Fu, Q. Zhu, Y. Xie, and Y. Hu. 2021b. “An augmented representation method of debris flow scenes to improve public perception.” International Journal of Geographical Information Science 35 (8): 1521–1544. doi:10.1080/13658816.2020.1833016.
  • Li, W., J. Zhu, J. Haunert, L. Fu, Q. Zhu, and Y. Dehbi. 2022b. “Three-dimensional virtual representation for the whole process of dam-break floods from a geospatial storytelling perspective.” International Journal of Digital Earth 15 (1): 1637–1656. doi:10.1080/17538947.2022.2118877.
  • Lim, Y., and Y. Ahn. 2018. “A Study on Comparative Analysis About Evacuation Results According to Advance Information in Underground Subway Fire.” Journal of the Korean Society of Hazard Mitigation 18 (2): 223–230. doi:10.9798/KOSHAM.2018.18.2.223.
  • Lin, H., B. Xu, Y. Chen, W. Li, L. You, and J. He. 2022. “VGES as a New Platform for Urban Modeling and Simulation.” Sustainability 14 (13): 7980. doi:10.3390/su14137980.
  • Liu, B., Y. Han, H. Zhang, and X. Qin. 2017. “Research of Crowd Evacuation Simulation Based on the Machine Learning.” Journal of Computational and Theoretical Nanoscience 14 (1): 815–820. doi:10.1166/jctn.2017.6279.
  • Lochhead, I., and N. Hedley. 2019. “Mixed Reality Emergency Management: Bringing Virtual Evacuation Simulations Into Real-World Built Environments.” International Journal of Digital Earth 12 (2): 190–208. doi:10.1080/17538947.2018.1425489.
  • Lu, L., H. Zhuang, and Z. Gao. 2018. “Evaluation of Dispersed Effect Based on Social Force-Based Vehicle Model and Emotional Infection Model: A Data Simulation Approach.” International Journal of High Performance Systems Architecture 8 (1-2): 105–113. doi:10.1504/IJHPSA.2018.094148.
  • Ma, L., H. Zhang, S. Meng, and J. Liu. 2022. “Volcanic Ash Region Path Planning Based on Improved A-Star Algorithm.” Journal of Advanced Transportation 2022, doi:10.1155/2022/9938975.
  • Nguyen, M. H., T. V. Ho, and J. D. Zucker. 2013. “Integration of Smoke Effect and Blind Evacuation Strategy (SEBES) Within Fire Evacuation Simulation.” Simulation Modelling Practice and Theory 36: 44–59. doi:10.1016/j.simpat.2013.04.001.
  • Nurcahyadi, T., C. Blum, and F. Manyà. 2022. “Negative Learning Ant Colony Optimization for MaxSAT.” International Journal of Computational Intelligence Systems 15 (1): 1–19. doi:10.1007/s44196-022-00120-6.
  • Ou, Y., Y. Fan, X. Zhang, Y. Lin, and W. Yang. 2022. “Improved A* Path Planning Method Based on the Grid Map.” Sensors 22 (16): 6198. doi:10.3390/s22166198.
  • Pütz, S., T. Wiemann, J. Sprickerhof, and J. Hertzberg. 2016. “3d Navigation Mesh Generation for Path Planning in Uneven Terrain.” IFAC-PapersOnLine 49 (15): 212–217. doi:10.1016/j.ifacol.2016.07.734.
  • Qin, J., C. Liu, and Q. Huang. 2020. “Simulation on Fire Emergency Evacuation in Special Subway Station Based on Pathfinder.” Case Studies in Thermal Engineering 21: 100677. doi:10.1016/j.csite.2020.100677.
  • Raheem, F. A., and U. I. Hameed. 2019. “Heuristic D* Algorithm Based on Particle Swarm Optimization for Path Planning of Two-Link Robot Arm in Dynamic Environment.” Al-Khwarizmi Engineering Journal 15 (2): 108–123. doi:10.22153/kej.2019.01.004.
  • Soltani, E., and E. Kashi. 2022. “Pedestrian Simulation and PLOS Analysis in the Subway Station.” Innovative Infrastructure Solutions 7 (1): 1–9. doi:10.1007/s41062-021-00662-2.
  • Sudte, J., and S. Patvichaichod. 2020. “Evacuation Time Analysis of High-Rise Building by Using Pathfinder Case Study: Residential Occupancy.” IOP Conference Series: Materials Science and Engineering 715 (1): 0012007. doi:10.1088/1757-899X/715/1/012007.
  • Sugiyama, T., and K. Yamori. 2020. “Consideration of Evacuation Drills Utilizing the Capabilities of People with Special Needs.” Journal of Disaster Research 15 (6): 794–801. doi:10.20965/jdr.2020.p0794.
  • Sun, Y., and H. Liu. 2021. “Crowd Evacuation Simulation Method Combining the Density Field and Social Force Model.” Physica A: Statistical Mechanics and its Applications 566: 125652. doi:10.1016/j.physa.2020.125652.
  • Vahidnia, M. H., A. A. Alesheikh, S. Behzadi, and S. Salehi. 2013. “Modeling the Spread of Spatio-Temporal Phenomena Through the Incorporation of ANFIS and Genetically Controlled Cellular Automata: A Case Study on Forest Fire.” International Journal of Digital Earth 6 (1): 51–75. doi:10.1080/17538947.2011.603366.
  • Wang, N., Y. Gao, C. Y. Li, and W. M. Gai. 2021a. “Integrated Agent-Based Simulation and Evacuation Risk-Assessment Model for Underground Building Fire: A Case Study.” Journal of Building Engineering 40: 102609. doi:10.1016/j.jobe.2021.102609.
  • Wang, C., Y. Tang, M. A. Kassem, H. Li, and Z. Wu. 2021b. “Fire Evacuation Visualization in Nursing Homes Based on Agent and Cellular Automata.” Journal of Safety Science and Resilience 2 (4): 181–198. doi:10.1016/j.jnlssr.2021.08.006.
  • Wang, J., G. Wei, and X. Dong. 2021c. “A Dynamic Fire Escape Path Planning Method with BIM.” Journal of Ambient Intelligence and Humanized Computing 12 (11): 10253–10265. doi:10.1007/s12652-020-02794-2.
  • Wang, Z., C. Zhang, J. Wang, Z. Zheng, and L. Li. 2021d. “Research on Path Planning Algorithm for Crowd Evacuation.” Symmetry 13 (8): 1339. doi:10.3390/sym13081339.
  • Xiong, J., E. L. Hsiang, Z. He, T. Zhan, and S. T. Wu. 2021. “Augmented Reality and Virtual Reality Displays: Emerging Technologies and Future Perspectives.” Light: Science & Applications 10 (1): 216. doi:10.1038/s41377-021-00658-8.
  • Xu, L., K. Huang, J. Liu, D. Li, and Y. F. Chen. 2022. “Intelligent Planning of Fire Evacuation Routes Using an Improved ant Colony Optimization Algorithm.” Journal of Building Engineering 61: 105208. doi:10.1016/j.jobe.2022.105208.
  • YenChern, N., C. WaiShiang, S. KengWai, M. A. bin Khairuddin, N. bt Jali, and E. ak Mit. 2021. “Developing Fire Evacuation Simulation Through BDI-Based Modelling and Simulation.” Journal of Physics: Conference Series 2107 (1): 0012047. doi:10.1088/1742-6596/2107/1/012047.
  • Yuan, Z., H. Jia, L. Zhang, and L. Bian. 2018. “A Social Force Evacuation Model Considering the Effect of Emergency Signs.” Simulation 94 (8): 723–737. doi:10.1177/0037549717741350.
  • Zainuddin, Z., and M. Shuaib. 2010. “Modification of the Decision-Making Capability in the Social Force Model for the Evacuation Process.” Transport Theory and Statistical Physics 39 (1): 47–70. doi:10.1080/00411450.2010.529979.
  • Zhai, L., and S. Feng. 2022. “A Novel Evacuation Path Planning Method Based on Improved Genetic Algorithm.” Journal of Intelligent & Fuzzy Systems 42 (3): 1813–1823. doi:10.3233/JIFS-211214.
  • Zhang, L., M. Liu, X. Wu, and S. M. AbouRizk. 2016. “Simulation-based Route Planning for Pedestrian Evacuation in Metro Stations: A Case Study.” Automation in Construction 71: 430–442. doi:10.1016/j.autcon.2016.08.031.
  • Zhang, Y. Y., Y. C. Shen, and L. N. Ma. 2014. “Pathfinding Algorithm of 3D Scene Based on Navigation Mesh.” Advanced Materials Research 1030: 1745–1750. doi:10.4028/www.scientific.net/AMR.1030-1032.1745.
  • Zhang, H., J. Xu, L. Jia, and Y. Shi. 2022. “Modelling the Walking Behavior of Pedestrians in the Junction with Chamfer Zone of Subway Station.” Physica A: Statistical Mechanics and its Applications 602, doi:10.1016/j.physa.2022.127656.
  • Zheng, X., H. Y. Li, L. Y. Meng, X. Y. Xu, and X. Chen. 2015. “Improved Social Force Model Based on Exit Selection for Microscopic Pedestrian Simulation in Subway Station.” Journal of Central South University 22 (11): 4490–4497. doi:10.1007/s11771-015-2997-5.
  • Zhong, M., C. Shi, X. Tu, T. Fu, and L. He. 2008. “Study of the Human Evacuation Simulation of Metro Fire Safety Analysis in China.” Journal of Loss Prevention in the Process Industries 21 (3): 287–298. doi:10.1016/j.jlp.2007.08.001.
  • Zhu, Y., B. Ding, J. Bao, Z. Mao, and X. Teng. 2019. “Social Force 3D Evacuation Model Based on Improved Ant Colony Algorithm.” In 1st International Symposium on Innovation and Education, Law and Social Sciences (IELSS 2019), edited by Wadim Striełkowski , 35–46. Shenyang: Atlantis Press. doi:10.2991/ielss-19.2019.8.
  • Zhu, Y., F. Han, Y. Yang, and X. Li. 2022. “Fire Evacuation Integration Modelling in Subway Station Using the Lattice Boltzmann Method.” Proceedings of the Institution of Civil Engineers - Transport 2022: 1–12. doi:10.1680/jtran.22.00052.