711
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of leaf-on and leaf-off canopy conditions on forest height retrieval and modelling with ICESat-2 data

, , , , , & show all
Pages 4831-4847 | Received 01 Nov 2022, Accepted 15 Nov 2023, Published online: 27 Nov 2023

References

  • Davison, S., D. N. Donoghue, and N. Galiatsatos. 2020. “The Effect of Leaf-on and Leaf-off Forest Canopy Conditions on LiDAR Derived Estimations of Forest Structural Diversity.” International Journal of Applied Earth Observation and Geoinformation 92:102160. https://doi.org/10.1016/j.jag.2020.102160.
  • Drusch, M., U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, et al. 2012. “Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services.” Remote Sensing of Environment 120:25–36. https://doi.org/10.1016/j.rse.2011.11.026.
  • Fayad, I., N. N. Baghdadi, C. A. Alvares, J. L. Stape, J. S. Bailly, H. F. Scolforo, M. Zribi, and G. Le Maire. 2021. “Assessment of GEDI's LiDAR Data for the Estimation of Canopy Heights and Wood Volume of Eucalyptus Plantations in Brazil.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:7095–7110. https://doi.org/10.1109/JSTARS.2021.3092836.
  • Gwenzi, D., M. A. Lefsky, V. P. Suchdeo, and D. J. Harding. 2016. “Prospects of the ICESat-2 Laser Altimetry Mission for Savanna Ecosystem Structural Studies Based on Airborne Simulation Data.” ISPRS Journal of Photogrammetry and Remote Sensing 118:68–82. https://doi.org/10.1016/j.isprsjprs.2016.04.009.
  • Hernández-Stefanoni, J. L., K. D. Johnson, B. D. Cook, J. M. Dupuy, R. Birdsey, A. Peduzzi, and F. Tun-Dzul. 2015. “Estimating Species Richness and Biomass of Tropical dry Forests Using LIDAR During Leaf-on and Leaf-off Canopy Conditions.” Applied Vegetation Science 18 (4): 724–732. https://doi.org/10.1111/avsc.12190.
  • Hill, R. A., and R. K. Broughton. 2009. “Mapping the Understorey of Deciduous Woodland from Leaf-on and Leaf-off Airborne LiDAR Data: A Case Study in Lowland Britain.” ISPRS Journal of Photogrammetry and Remote Sensing 64 (2): 223–233. https://doi.org/10.1016/j.isprsjprs.2008.12.004.
  • Jiang, F., F. Zhao, K. Ma, D. Li, and H. Sun. 2021. “Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm.” Remote Sensing 13 (8): 1535. https://doi.org/10.3390/rs13081535.
  • Kampe, T. U., B. R. Johnson, M. A. Kuester, and M. Keller. 2010. “NEON: The First Continental-Scale Ecological Observatory with Airborne Remote Sensing of Vegetation Canopy Biochemistry and Structure.” Journal of Applied Remote Sensing 4 (1): 043510. https://doi.org/10.1117/1.3361375.
  • Li, W., Z. Niu, R. Shang, Y. Qin, L. Wang, and H. Chen. 2020. “High-resolution Mapping of Forest Canopy Height Using Machine Learning by Coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 Data.” International Journal of Applied Earth Observation and Geoinformation 92:102163. https://doi.org/10.1016/j.jag.2020.102163.
  • Lim, K., P. Treitz, M. Wulder, B. St-Onge, and M. Flood. 2003. “LiDAR Remote Sensing of Forest Structure.” Progress in Physical Geography: Earth and Environment 27 (1): 88–106. https://doi.org/10.1191/0309133303pp360ra.
  • Liu, A., X. Cheng, and Z. Chen. 2021. “Performance Evaluation of GEDI and ICESat-2 Laser Altimeter Data for Terrain and Canopy Height Retrievals.” Remote Sensing of Environment 264: 112571. https://doi.org/10.1016/j.rse.2021.112571.
  • Malambo, L., and S. C. Popescu. 2021. “Assessing the Agreement of ICESat-2 Terrain and Canopy Height with Airborne Lidar Over US Ecozones.” Remote Sensing of Environment 266:112711. https://doi.org/10.1016/j.rse.2021.112711.
  • Moudrý, V., A. F. Cord, L. Gábor, G. V. Laurin, V. Barták, K. Gdulová, M. Malavasi, et al. 2023. “Vegetation Structure Derived from Airborne Laser Scanning to Assess Species Distribution and Habitat Suitability: The way Forward.” Diversity and Distributions 29 (1): 39–50. https://doi.org/10.1111/ddi.13644.
  • Moudrý, V., K. Gdulová, L. Gábor, E. Šárovcová, V. Barták, F. Leroy, O. Špatenková, D. Rocchini, and J. Prošek. 2022. “Effects of Environmental Conditions on ICESat-2 Terrain and Canopy Heights Retrievals in Central European Mountains.” Remote Sensing of Environment 279:113112. https://doi.org/10.1016/j.rse.2022.113112.
  • Moudrý, V., V. Lecours, K. Gdulová, L. Gábor, L. Moudrá, J. Kropáček, and J. Wild. 2018. “On the Use of Global DEMs in Ecological Modelling and the Accuracy of New Bare-Earth DEMs.” Ecological Modelling 383:3–9. https://doi.org/10.1016/j.ecolmodel.2018.05.006.
  • Mulverhill, C., N. C. Coops, T. Hermosilla, J. C. White, and M. A. Wulder. 2022. “Evaluating ICESat-2 for Monitoring, Modeling, and Update of Large Area Forest Canopy Height Products.” Remote Sensing of Environment 271:112919. https://doi.org/10.1016/j.rse.2022.112919.
  • Nandy, S., R. Srinet, and H. Padalia. 2021. “Mapping Forest Height and Aboveground Biomass by Integrating ICESat-2, Sentinel-1 and Sentinel-2 Data Using Random Forest Algorithm in Northwest Himalayan Foothills of India.” Geophysical Research Letters 48 (14): e2021GL093799. https://doi.org/10.1029/2021GL093799.
  • Narine, L. L., S. C. Popescu, and L. Malambo. 2019a. “Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning.” Remote Sensing 11 (12): 1503. https://doi.org/10.3390/rs11121503.
  • Narine, L. L., S. Popescu, A. Neuenschwander, T. Zhou, S. Srinivasan, and K. Harbeck. 2019b. “Estimating Aboveground Biomass and Forest Canopy Cover with Simulated ICESat-2 Data.” Remote Sensing of Environment 224:1–11. https://doi.org/10.1016/j.rse.2019.01.037.
  • Narine, L. L., S. Popescu, T. Zhou, S. Srinivasan, and K. Harbeck. 2019c. “Mapping Forest Aboveground Biomass with a Simulated ICESat-2 Vegetation Canopy Product and Landsat Data.” Annals of Forest Research 62 (2): 69–86. https://doi.org/10.15287/afr.2018.1163.
  • Neuenschwander, A., E. Guenther, J. C. White, L. Duncanson, and P. Montesano. 2020. “Validation of ICESat-2 Terrain and Canopy Heights in Boreal Forests.” Remote Sensing of Environment 251:112110. https://doi.org/10.1016/j.rse.2020.112110.
  • Neuenschwander, A. L., and L. A. Magruder. 2016. “The Potential Impact of Vertical Sampling Uncertainty on ICESat-2/ATLAS Terrain and Canopy Height Retrievals for Multiple Ecosystems.” Remote Sensing 8 (12): 1039. https://doi.org/10.3390/rs8121039.
  • Neuenschwander, A. L., and L. A. Magruder. 2019a. “Canopy and Terrain Height Retrievals with ICESat-2: A First Look.” Remote Sensing 11 (14): 1721. https://doi.org/10.3390/rs11141721.
  • Neuenschwander, A., and K. Pitts. 2019b. “The ATL08 Land and Vegetation Product for the ICESat-2 Mission.” Remote Sensing of Environment 221:247–259. https://doi.org/10.1016/j.rse.2018.11.005.
  • Nie, S., C. Wang, X. Xi, S. Luo, G. Li, J. Tian, and H. Wang. 2018. “Estimating the Vegetation Canopy Height Using Micro-Pulse Photon-Counting LiDAR Data.” Optics Express 26 (10): A520–A540. https://doi.org/10.1364/OE.26.00A520.
  • Nwankwo, U. C., S. Howden, D. Wells, and B. Connon. 2021. “Validation of VDatum in Southeastern Louisiana and Western Coastal Mississippi.” Marine Geodesy 44 (1): 1–25. https://doi.org/10.1080/01490419.2020.1846644.
  • Pang, S., G. Li, X. Jiang, Y. Chen, Y. Lu, and D. Lu. 2022. “Retrieval of Forest Canopy Height in a Mountainous Region with ICESat-2 ATLAS.” Forest Ecosystems 9:100046. https://doi.org/10.1016/j.fecs.2022.100046.
  • Potapov, P., X. Y. Li, A. Hernandez-Serna, A. Tyukavina, M. C. Hansen, A. Kommareddy, A. Pickens, et al. 2021. “Mapping Global Forest Canopy Height Through Integration of GEDI and Landsat Data.” Remote Sensing of Environment 253:112165. https://doi.org/10.1016/j.rse.2020.112165.
  • Scholl, V. M., M. E. Cattau, M. B. Joseph, and J. K. Balch. 2020. “Integrating National Ecological Observatory Network (NEON) Airborne Remote Sensing and in-Situ Data for Optimal Tree Species Classification.” Remote Sensing 12 (9): 1414. https://doi.org/10.3390/rs12091414.
  • Silva, C. A., L. Duncanson, S. Hancock, A. Neuenschwander, N. Thomas, M. Hofton, L. Fatoyinbo, et al. 2021. “Fusing Simulated GEDI, ICESat-2 and NISAR Data for Regional Aboveground Biomass Mapping.” Remote Sensing of Environment 253:112234. https://doi.org/10.1016/j.rse.2020.112234.
  • Simard, M., L. Fatoyinbo, C. Smetanka, V. H. Rivera-Monroy, E. Castañeda-Moya, N. Thomas, and T. Van der Stocken. 2019. “Mangrove Canopy Height Globally Related to Precipitation, Temperature and Cyclone Frequency.” Nature Geoscience 12 (1): 40–45. https://doi.org/10.1038/s41561-018-0279-1.
  • Simard, M., N. Pinto, J. B. Fisher, and A. Baccini. 2011. “Mapping Forest Canopy Height Globally with Spaceborne Lidar.” Journal of Geophysical Research: Biogeosciences 116:G4. https://doi.org/10.1029/2011JG001708.
  • Sun, T., J. Qi, and H. Huang. 2020. “Discovering Forest Height Changes Based on Spaceborne Lidar Data of ICESat-1 in 2005 and ICESat-2 in 2019: A Case Study in the Beijing-Tianjin-Hebei Region of China.” Forest Ecosystems 7 (1): 1–12. https://doi.org/10.1186/s40663-019-0212-0.
  • Tian, X., and J. Shan. 2021. “Comprehensive Evaluation of the ICESat-2 ATL08 Terrain Product.” IEEE Transactions on Geoscience and Remote Sensing 59 (10): 8195–8209. https://doi.org/10.1109/TGRS.2021.3051086.
  • Wang, X., X. Cheng, P. Gong, H. Huang, Z. Li, and X. Li. 2011. “Earth Science Applications of ICESat/GLAS: A Review.” International Journal of Remote Sensing 32 (23): 8837–8864. https://doi.org/10.1080/01431161.2010.547533.
  • Wang, C., A. J. Elmore, I. Numata, M. A. Cochrane, S. Lei, C. R. Hakkenberg, Y. Li, Y. Zhao, and Y. Tian. 2022. “A Framework for Improving Wall-to-Wall Canopy Height Mapping by Integrating GEDI LiDAR.” Remote Sensing 14 (15): 3618. https://doi.org/10.3390/rs14153618.
  • White, J. C., M. Woods, T. Krahn, C. Papasodoro, D. Bélanger, C. Onafrychuk, and I. Sinclair. 2021. “Evaluating the Capacity of Single Photon Lidar for Terrain Characterization Under a Range of Forest Conditions.” Remote Sensing of Environment 252:112169. https://doi.org/10.1016/j.rse.2020.112169.
  • Yang, L., X. Meng, and X. Zhang. 2011. “SRTM DEM and its Application Advances.” International Journal of Remote Sensing 32 (14): 3875–3896. https://doi.org/10.1080/01431161003786016.
  • Yu, J., S. Nie, W. Liu, X. Zhu, D. Lu, W. Wu, and Y. Sun. 2022. “Accuracy Assessment of ICESat-2 Ground Elevation and Canopy Height Estimates in Mangroves.” IEEE Geoscience and Remote Sensing Letters 19:1–5. https://doi.org/10.1109/LGRS.2021.3107440.
  • Zhang, X., L. Liu, X. Chen, Y. Gao, S. Xie, and J. Mi. 2021. “GLC_FCS30: Global Land-Cover Product with Fine Classification System at 30 m Using Time-Series Landsat Imagery.” Earth System Science Data 13 (6): 2753–2776. https://doi.org/10.5194/essd-13-2753-2021.
  • Zhu, X., S. Nie, C. Wang, and X. Xi. 2020b. “The Performance of ICESat-2's Strong and Weak Beams in Estimating Ground Elevation and Forest Height.” In IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE: 6073–6076. https://doi.org/10.1109/IGARSS39084.2020.9323094.
  • Zhu, X., S. Nie, C. Wang, X. Xi, and Z. Hu. 2018. “A Ground Elevation and Vegetation Height Retrieval Algorithm Using Micro-Pulse Photon-Counting Lidar Data.” Remote Sensing 10 (12): 1962. https://doi.org/10.3390/rs10121962.
  • Zhu, X., S. Nie, C. Wang, X. Xi, J. Wang, D. Li, and H. Zhou. 2020a. “A noise removal algorithm based on OPTICS for photon-counting LiDAR data.” IEEE Geoscience and Remote Sensing Letters 18 (8): 1471-1475. https://doi.org/10.1109/LGRS.2020.3003191.l.
  • Zhu, X., C. Wang, S. Nie, F. Pan, X. Xi, and Z. Hu. 2020c. “Mapping Forest Height Using Photon-Counting LiDAR Data and Landsat 8 OLI Data: A Case Study in Virginia and North Carolina, USA.” Ecological Indicators 114:106287. https://doi.org/10.1016/j.ecolind.2020.106287.