317
Views
10
CrossRef citations to date
0
Altmetric
Articles

Loss of suitable climatic areas for Araucaria forests over time

ORCID Icon, , , , , & show all
Pages 115-126 | Received 09 Mar 2018, Accepted 08 May 2019, Published online: 21 May 2019

References

  • Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 43:1223–1232.
  • Anhuf D, Ledru MP, Behling H, Da Cruz Jr FW, Cordeiro RC, Vander Hammen T, Karmann I, Marengo JA, Oliveira PE, Pessenda L, et al. 2006. Paleo-environmental change in Amazonian and Africanrainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol. 239:510–527.
  • Araújo MB, New M. 2007. Ensemble forecasting of species distributions. Trends Ecol Evol. 22:42–47.
  • Araújo MB, Nogués-Bravo D, Diniz-Filho JAF, Haywood AM, Valdes PJ, Rahbek C. 2008. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography. 31:8–15.
  • Arruda DM, Schaefer CEGR, Fonseca RS, Solar RRC, Fernandes-Filho EI. 2018. Vegetation cover of Brazil in the last 21 ka: new insights into the Amazonian refugia and Pleistocene arc hypotheses. Global Ecol Biogr. 27:47–56.
  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. 2012. Selecting pseudo-absences for species distribution models : how, where and how many? Methods Ecol Evol. 3:327–338.
  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F. 2011. The crucial role of the acessible area in ecological niche modeling and species distribution modeling. Ecol Modell. 11:1810–1819.
  • Behling H. 1995. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J Paleolimnol. 14:253–268.
  • Behling H. 1997. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr Palaeoclimatol Palaeoecol. 129:407–422.
  • Behling H. 1998. Late Quaternary vegetational and climatic changes in Brazil. Rev Palaeobot Palynol. 99:143–156.
  • Behling H. 2002. South and southeast Brazilian grassland during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol. 177:19–27.
  • Behling H. 2003. Late glacial and Holocene vegetation, climate and fire history inferred from Lagoa Nova in the southeastern Brazilian lowland. Veg Hist Archaeobot. 12:263–270.
  • Behling H, Dupont L, Safford H, Wefer G. 2007. Late Quaternary vegetation and climate dynamics in the Serra da Bocaina, southeastern Brazil. Quat Int. 161:22–31.
  • Behling H, Lichte M. 1997. Evidence of Dry and Cold Climatic Conditions at Glacial Times in Tropical Southeastern Brazil. Quat Res. 48:348–358.
  • Behling H, Pillar VD, Orlóci L, Bauermann SG. 2004. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol. 203:277–297.
  • Bergamin RS, Bastazini VAG, Vélez-Martin E, Debastiani V, Zanini KJ, Loyola R, Müller SC. 2017. Linking beta diversity patterns to protected areas: lessons from the Brazilian Atlantic Rainforest. Biodivers Conserv. 26(7):1557–1568.
  • Bergamin RS, Duarte LDS, Marcilio-Silva V, GD Dos S S, Liebsch D, Marques MCM. 2015. Compilation of woody species occurring in the Brazilian Atlantic Forest complex. Front Biogr. 7:69–72.
  • Bergamin RS, Müller S, Mello RSP. 2012. Indicator species and floristic patterns in different forest formations in southern Atlantic rainforests of Brazil. Community Ecol. 13:162–170.
  • Brown KS, Ab’Saber AN. 1979. Ice-age forest refuges andevolution in the Neotropics: correlation of paleoclimatological, geomorphological and pedological data with modern biologicalendemisms. Paleoclimas 5: 1–30.
  • Bueno ML, Pennington RT, Dexter KG, Kamino LHY, Pontara V, Neves DM, Ratter JA, Oliveira-Filho AT. 2016. Effects of Quaternary climatic fluctuations on the distribution of Neotropical savanna tree species. Ecography. 40(3):1–12.
  • Carnaval AC, Moritz C. 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr. 35:1187–1201.
  • Collevatti RG, Terribile LC, Oliveira G, Lima-Ribeiro MS, Nabout JC, Rangel TF, Diniz-Filho JAF. 2012. Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. J Biogeogr. 40:345–358.
  • Colombo F, Joly C. 2010. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol. 70:697–708.
  • De Cáceres M, Legendre P. 2009. Association between species and group of sites: indices and statistical inference. Ecology. 90:3566–3574.
  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Jrg M, Gruber B, Lafourcade B, Leitão P, et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 36:27–46.
  • Duarte LDS, Bergamin RS, Marcilio-Silva V, Seger GDDS, Marques MCM. 2014. Phylobetadiversity among forest types in the Brazilian Atlantic Forest complex. PLoS One. 9(8):e105043. doi:10.1371/journal.pone.0105043.
  • Duarte LDS, Mmg D-S, Hartz SM, Pillar VD. 2006. Role of nurse plants in Araucaria Forest expansion over grassland in south Brazil. Austral Ecol. 31:520–528.
  • Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 67:345–366.
  • Dullinger S, Willner W, Plutzar C, Englisch T, Schratt-Ehrendorfer L, Moser D, Ertl S, Essl F, Nikfeld H. 2012a. Post-glacial migrationlag restricts range filling of plants in the European Alps. Global EcolBiogr. 21:829–840.
  • Dullinger S, Willner W, Plutzar C, Englisch T, Schratt-Ehrendorfer L, Moser D, Ertl S, Essl F, Nikfeld H. 2012a. Post-glacial migration lag restricts range filling of plants in the European Alps. Global Ecol Biogr. 21:829–840.
  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann, NE, Araújo MB, Pearman PB, Lay G, Piedallu C, Albert CH, et al. 2011. 21st century climate change threatens mountain flora unequallyacross Europe. Glob Chang Biol. 17:2330–2341.
  • Feeley KJ, Silman MR, Bush MB, Farfan W, Cabrera KG, Mahli Y, Meir P, Revilla NS, Quisiyupanqui MNR, Saatchi S. 2011. Upslope migration of Andean trees. J Biogeogr. 38:783–791.
  • Ferro VG, Lemes P, Melo AS, Loyola R. 2014. The reduced effectiveness of protected areas under climate change threatens atlantic forest tiger moths. PLoS One. 9(9):e107792. doi:10.1371/journal.pone.0107792.
  • Fiaschi P, Pirani JR. 2009. Review of plant biogeographic studies in Brazil. J Syst Evol. 47:477–496.
  • Gonçalves ET, Souza AF. 2014. Floristic variation in ecotonal areas: patterns, determinants and biogeographic origins of subtropical forests in South America. Austral Ecol. 39:122–134.
  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. 2006. The distributions of wide range taxonomic groups are expanding polewards. Glob Chang Biol. 12:450–455.
  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 25:1965–1978.
  • Hijmans RJ, Phillips S, Leathwick J, Elith J 2015. SpeciesDistribution Modeling. Package “dismo”. R Package version 1.0-12. http://CRAN.Rproject.org/package=dismo. Accessed 25 OUT 2017.
  • Hortal J, Jaf D-F, Bini LM, Má R, Baselga A, Nogués-Bravo D, Rangel TF, Hawkins BA, Lobo JM. 2011. Ice age climate, evolutionary constraints and diversity patterns of european dung beetles. Ecol Lett. 14:741–748.
  • Hueck K. 1972. As florestas da América do Sul. Ecologia,composição e importancia econômica. Polígono, São Paulo.
  • IPCC. 2013. Climate Change 2013: the Physical Science Basis.Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J,Nauels A, Xia Y, Bex V, Midgley, PM, editors. Cambridge UniversityPress, New York.
  • Jackson ST, Overpeck JT. 2000. Responses of plant population and communities to environmental changes of the late Quaternary. Paleobiology. 26:194–220.
  • Jarenkow JA, Baptista LRM. 1987. Composição florística eestrutura da mata com araucária na Estação Ecológica de Aracuri,Esmeralda, Rio Grande do Sul. Napaea, 3: 9–18.
  • Jeske-Pieruschka V, Fidelis A, Bergamin RS, Vélez-Mart ín E,Behling H. 2010. Araucaria forest dynamics in relation to fire frequency in southern Brazil based on fossil and modern pollendata. Rev Palaeobot Palynol. 160: 53–65.
  • Jeske-Pieruschka V, Pillar VD, Oliveira MAT, Behling H. 2012. New insights into vegetation, climate and fire history of southern Brazil revealed by a 40,000 year environmental record from the State Park Serra do Tabuleiro. Veg Hist Archaeobot. 22:299–314.
  • Joly CA, Metzger JP, Tabarelli M. 2014. Experiences from the Brazilian Atlantic Forest : ecological findings and conservation initiatives. New Phytol. 204:459–473.
  • Kelly AE, Goulden ML. 2008. Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci U.S.A. 105:11823–11826.
  • Klein RM. 1960. O aspecto dinâmico do pinheiro brasileiro. Sellowia. 12:17–44.
  • Klein RM. 1984. Aspectos dinâmicos da vegetação do sul do Brasil. Sellowia 36: 5-54.
  • Kubota Y, Shiono T, Kusumoto B. 2015. Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the east Asian continental islands. Ecography. 38:639–648.
  • Ledru MP. 1993. Late Quaternary Environmental and Climate Changes in Central Brazil. Quat Res. 39:90–98.
  • Ledru MP, Salgado-Labouriau ML, Lorscheitter ML. 1998. Vegetation dynamics in southern and central Brazil during the last 10,000 yr BP. Rev Palaeobot Palynol. 99:131–142.
  • Lemes P, Loyola RD. 2013. Accommodating Species Climate-Forced Dispersal and Uncertainties in Spatial Conservation Planning. PLoS One. 8(1):e54323. doi:10.1371/journal.pone.0054323.
  • Lenoir J, Gégout JC, Pierrat JC, Bontemps JD, Dhôte JF. 2009. Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986-2006). Ecography. 32:765–777.
  • Li X, Jiang G, Tian H, Xu L, Yan C, Wang Z, Wei F, Zhang Z. 2015. Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia. Ecography. 38:74–82.
  • Lobo JM, Togenelli MF. 2011. Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J Nat Conserv. 19:1–7.
  • Loyola RD, Lemes P, Brum FT, Provete DB, Duarte LDS. 2014. Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography. 37:65–72.
  • Loyola RD, Lemes P, Faleiro FV, Trindade-Filho J, Machado RB. 2012. Severe Loss of Suitable Climatic Conditions for Marsupial Species in Brazil: challenges and Opportunities for Conservation. PLoS One. 7(9):e46257. doi:10.1371/journal.pone.0046257.
  • Mâ M, Barbet-Massin M, Martinez J, Prestes NP, Jiguet F. 2010. Applying ecological niche modelling to plan conservation actions for the Red-spectacled Amazon (Amazona pretrei). Biol Conserv. 143:102–112.
  • Marengo JA. 2014. O futuro do clima do Brasil. Revista USP São Paulo. 103:25–32.
  • Marques MCM, Swaine MD, Liebsch D. 2011. Diversity distribution and floristic differentiation of the coastal lowland vegetation: implications for the conservation of the Brazilian Atlantic Forest. Biodivers Conserv. 20:153–168.
  • Mayle FE, Beerling DJ, Gosling WD, Bush MB. 2004. Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philos Trans Royal Soc B. 359:499–514.
  • McPherson JM, Jetz W. 2007. Effects of species’ ecology on the accuracy of distributions models. Ecography. 30:135–151.
  • Millar RJ, Fuglestve JS, Friedlingstein P, Rogelj P, Grubb MJ, Matthews HD, Skeie RB, Forster PM, Frame DJ, Allen MR. 2017. Emission budgets and pathways consitent with limiting warming to 1.5 °C. Nat Geosci. 10:741–747.
  • Mittermeier CG, Turner WR, Larsen FW, Brooks TM. 2011. Global biodiversity conservation: the critical role of hotspots.In: Zachos FE, Habel JC, editors. Biodiversity hotspots: distribution and protection of priority conservation areas. Springer, Berlin; p. 3–22
  • Moritz C, Agudo R. 2013. The Future of Species Under Climate Change: resilience or Decline? Science. 341:504–508.
  • Müller SC, Overbeck GE, Blanco CC, Oliveira JM, Pillar VDP. 2012. South Brazilian forest-grasslands ecotones: dynamics affected byclimate, disturbance and woody species traits. In: Myster R, editor. Ecotone between forest and grasslands. Springer, New York. pp.167-187.
  • Nogués-Bravo D, Araújo MB, Errea MP, Martínez-Rica JP. 2007. Exposure of global mountain systems to climate warming during the 21st Century. Global Environ Change. 17:420–428.
  • Oliveira JM, Pillar VD. 2004. Vegetation dynamics on mosaics of Campos and Araucaria forest between 1974 and 1999 in Southern Brazil. Community Ecol. 5:197–202.
  • Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM. 2014. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol. 8:242–260.
  • Oliveira-Filho AT, Fontes MAL. 2000. Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. Biotropica. 32:793–810.
  • Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco C, Boldrini II, Both R, Forneck ED. 2007. Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst. 9:101–116.
  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Mayer E, Nakamura M, Araújo MB. 2011. Ecological niches andgeographic distributions. Princeton Univ. Press., New Jersey.
  • Petit RJ, Hu FS, Dick CW. 2008. Forests of the past: a window to future changes. Science. 320:1450–1452.
  • Pillar VD. 2003. Dinâmica da expansão florestal em mosaicos de floresta e Campos no sul do Brasil. In: Claudino-Sales V, editor. Ecossistemas Brasileiros: manejo e Conservação. Fortaleza: Editora Expressão Gráfica; p. 209–216.
  • Rambo B. 1951. O elemento andino no pinhal riograndense. Anais Botânicos do Herbário "Barbosa Rodrigues" 3: 3–36.
  • Rambo B. 1953. História da flora do planalto riograndense. Anais Botânicos do Herbário Barbosa Rodrigues 5: 185-232.
  • Schwörer C, Henne PD, Tinner W. 2014. A model-data comparison of Holocene timberline changes in the Swiss Alps reveals past and future drivers of mountain forest dynamics. Glob Chang Biol. 20:1512–1526.
  • Silva LCR, Anand M. 2011. Mechanisms of Araucaria (Atlantic) forest expansion into Southern Brazilian grasslands. Ecosystems. 14:1354–1371.
  • Souza TV, Lorini ML, Alves MAS, Cordeiro P, Vale MM. 2011. Redistribution of threatened and endemic atlantic forest birds under climate change. Nat Conserv. 9:214–218.
  • Stival-Santos A 2014. Efeitos dos filtros ambientais nos padrões de diversidade de árvores na floresta atlântica do sul do Brasil sob uma perspectiva de metacomunidades. MSc. Dissertation. Universidade Federal do Rio Grande do Sul, Brazil. 65p.
  • Sühs RB, Ghiel ELH, Peroni N. 2018. Interaction of land management and araucaria trees in the maintenance of landscape diversity in the highlands of southern Brazil. PLoS One. 13:e0206805.
  • Svenning JC, Skov F. 2007. Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecol Biogr. 16:234–245.
  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, Siqueira MF, Grainger A, Hannah L, et al. 2004. Extinction risk from climate change. Nature. 427:145–148.
  • Waechter JL. 2002. Padrões geográficos na flora atual do Rio Grande do Sul. Ciência E Ambiente. 24:93–108.
  • Werneck FP, Costa GC, Colli GR, Prado DE, Sites JW. 2011a. Revisiting the historical distribution of Seasonally Dry Tropical Forests: new insights based on palaeodistribution modelling and palynological evidencegeb. Global Ecol Biogr. 20:272–288.
  • Werneck MS, Sobral MEG, Rocha CTV, Landau EC, Stehmann JR. 2011b. Distribution and endemism of angiosperms in the atlantic forest. Nat Conserv. 9:188–193.
  • Zwiener VP, Lira-Noriega A, Grady CJ, Padial AA, Vitule JRS. 2018. Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Global Ecol Biogr. 27:298–309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.