441
Views
14
CrossRef citations to date
0
Altmetric
Articles

Among cradles and museums: seasonally dry forest promotes lineage exchanges between rain forest and savanna

ORCID Icon, , , , &
Pages 1-13 | Received 06 Jun 2019, Accepted 21 Dec 2019, Published online: 03 Feb 2020

References

  • [APG] Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 181:1–20.
  • Antonelli A, Sanmartín I. 2011. Why are there so many plant species in the Neotropics? Taxon. 60:403–414.
  • Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL. 2018. Amazonia is the primary source of Neotropical biodiversity. Proc Nat Acad Sci USA. 115:6034–6039.
  • Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol Biogeogr. 19:134–143.
  • Baselga A, Orme CDL. 2012. Betapart: an R package for the study of beta diversity. Methods Ecol Evol. 3:808–812.
  • [BFG] Brazil Flora Group. 2015. Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguesia. 66:1085–1113.
  • Batalha MA, Silva IA, Cianciaruso MV, Carvalho GH. 2011. Trait diversity on the phylogeny of Cerrado woody species. Oikos. 120:1741–1751.
  • Becerra JX. 2005. Timing the origin and expansion of the Mexican tropical dry forest. Proc Nat Acad Sci USA. 102:10919–10923.
  • Bollback JP. 2006. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinf. 7:88.
  • Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL. 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Nat Acad Sci USA. 105:11505–11511.
  • Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. New York (NY): Springer.
  • Burnham RJ, Johnson KR. 2004. South American palaeobotany and the origins of neotropical rainforests. Philos Trans R Soc B. 359:1595–1610.
  • Cássia-Silva C, Cianciaruso MV, Maracahipes L, Collevatti RG. 2017. When the same is not the same: phenotypic variation reveals different plant ecological strategies within species occurring in distinct Neotropical savanna habitats. Plant Ecol. 218:1221–1231.
  • Collevatti RG, Castro TG, Lima JS, Telles MPC. 2012. Phylogeography of Tibouchina papyrus (Pohl) Toledo (Melastomataceae), an endangered tree species from rocky savannas, suggests bidirectional expansion due to climate cooling in the Pleistocene. Ecol Evol. 2:1024–1035.
  • Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder P. 2009. Phylogenetic biome conservatism on a global scale. Nature. 458:754–756.
  • Darriba D, Taboada GL, Doallo R, Posada D. 2015. jModelTest 2 : more models, new heuristics and high- performance computing. Nat Methods. 9:6–9.
  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. 2005. Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern Tropical rain forests. Am Nat. 165:E36–E65.
  • Donoghue MJ. 2008. Colloquium paper: a phylogenetic perspective on the distribution of plant diversity. Proc Nat Acad Sci USA. 105:11549–11555.
  • Franco AC. 2002. Ecophysiology of woody plants. In: Oliveira PS, Marquis R, editors. The Cerrado of Brazil: ecology and natural history of a Neotropical savanna. New York (NY): Columbia University Press; p. 178–197.
  • Furley PA. 1992. Edaphic changes at the forest–savanna boundary. In: Furley PA, Proctor J, Ratter JA, editors. Nature and dynamics of forest-savanna boundaries. London (UK): Chapman and Hall; p. 91–117.
  • Furley PA, Ratter JA. 1988. Soil resources and plant communities the central Brazilian Cerrado and their development. J Biogeogr. 15:97–108.
  • Gaston KJ, Blackburn TM. 1996. The tropics as a museum of biological diversity: an analysis of the New World avifauna. Philos Trans R Soc B. 263:63–68.
  • Gerhold P, Cahill JF, Winter M, Bartish IV, Prinzing A. 2015. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol. 29:600–614.
  • Haridasan M. 1982. Aluminium accumulation by some Cerrado native species in central Brazil. Plant Soil. 65:265–273.
  • Haridasan M. 1992. Observations on soils, foliar nutrient concentrations and floristic composition of Cerrado sensu stricto and cerradão communities in central Brazil. In: Furley PA, Proctor J, Ratter JA, editors. Nature and dynamics of forest-savanna boundaries. London (UK): Chapman and Hall; p. 171–184.
  • Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics. 24:129–131.
  • Hopper SD. 2009. OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil. 322:49–86.
  • Hughes CE, Pennington RT, Antonelli A. 2013. Neotropical plant evolution: assembling the big picture. Bot J Linn Soc. 171:1–18.
  • IBGE. 2012. Manual técnico da vegetação brasileira. Rio de Janeiro: IBGE.
  • Jablonski D. 1993. The tropics as a source of evolutionary novelty through geological time. Nature. 364:142–144.
  • Jansen S, Dessein S, Piesschaert F, Robbrecht E, Smets E. 2000. Aluminium accumulation in leaves of Rubiaceae: systematic and phylogenetic implications. Ann Bot. 85:91–101.
  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 26:1463–1464.
  • Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E. 2009. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Nat Acad Sci USA. 106:18621–18626.
  • Leprieur F, Albouy C, de Bortoli J, Cowman PF, Bellwood DR, Mouillot D. 2012. Quantifying phylogenetic beta diversity: distinguishing between “true” turnover of lineages and phylogenetic diversity gradients. PLoS One. 7:e42760.
  • Lessard J, Belmaker J, Myers JA, Chase JM, Rahbek C. 2012. Inferring local ecological processes amid species pool influences. Trends Ecol Evol. 27:600–607.
  • Maddison WP, Maddison DR 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org/.
  • Maracahipes L, Carlucci MB, Lenza E, Marimon BS, Marimon BH, Guimarães FA, Cianciaruso MV. 2018. How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter- and intraspecific levels in savanna and forest woody plants. Perspect Plant Ecol Evol Syst. 34:17–25.
  • Mendonça RC, Felfili JM, Walter BMT, Silva-Júnior MC, Rezende AV, Filgueiras TS, Nogueira PE, Fagg CW. 2008. Flora vascular do bioma Cerrado: checklist com 12.356 espécies. In: Sano SM, Almeida SP, Ribeiro JF, editors. Cerrado: ecologia e Flora. Vol. 2. Embrapa Cerrados: Embrapa Informação Tecnológica; p. 421–1279.
  • Morrone JJ. 2014. Biogeographical regionalisation of the neotropical region. Zootaxa 3782:1–110.
  • Oliveira-Filho AT, Ratter JA. 1995. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh J Bot. 52:141–194.
  • Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B. 255:37–45.
  • Pagel M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol. 48:612–622.
  • Pennington RT, Lavin M, Oliveira-Filho A. 2009. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry Tropical forests. Annu Rev Ecol Evol Syst. 40:437–457.
  • Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK, Butterworth CA. 2004. Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both tertiary and quaternary diversification. Proc R Soc B. 359:515–538.
  • Pennington RT, Prado DE, Pendry CA. 2000. Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr. 27:261–273.
  • Pennington RT, Richardson JE, Lavin M. 2006. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol. 172:605–616.
  • Prinzing A, Durka W, Klotz S, Brandl R. 2001. The niche of higher plants: evidence for phylogenetic conservatism. Proc Nat Acad Sci USA. 268:2383–2389.
  • Queiroz LP, Lavin M. 2011. Coursetia (Leguminosae) from eastern Brazil: nuclear ribosomal and chloroplast DNA sequence analysis reveal the monophyly of three Caatinga-inhabiting species. Syst Bot. 36:69–79.
  • R Core Team. 2015. R 3.2.2: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/.
  • Ratter JA, Bridgewater S, Ribeiro JF. 2003. Analysis of the floristic composition of the Brazilian Cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh J Bot. 60:57–109.
  • Revell LJ. 2012. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 3:217–223.
  • Sanderson MJ. 1993. Reversibility in evolution: A maximum likelihood approach to character gain/loss bias in phylogenies. Evolution. 47:236–252.
  • Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 7:539.
  • Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Nat Acad Sci USA. 106:20359–20364.
  • Simon MF, Pennington T. 2012. Evidence for adaptation to fire regimes in the Tropical savannas of the Brazilian Cerrado. Int J Plant Sci. 173:711–723.
  • Simon MF, Proença C. 2000. Phytogeographic patterns of Mimosa (Mimosoideae, Leguminosae) in the Cerrado biome of Brazil : an indicator genus of high-altitude centers of endemism? Biol Conserv. 96:279–296.
  • Souza-Neto AC, Cianciaruso MV, Collevatti RG. 2016. Habitat shifts shaping the diversity of a biodiversity hotspot through time: insights from the phylogenetic structure of Caesalpinioideae in the Brazilian Cerrado. J Biogeogr. 43:340–350.
  • Stenseth NC. 1984. The tropics: cradle or museum? Oikos. 43:417–420.
  • Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4:vey016.
  • Swenson NG. 2009. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS One. 4:e4390.
  • Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Pavoine S. 2017. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev. 92:698–715.
  • Webb CO, Ackerly DD, Kembel SW. 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 24:2098–2100.
  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. 2002. Phylogenies and community ecology. Annu Rev. Ecol Evol Syst. 33:475–505.
  • Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends Ecol Evol. 19:639–644.
  • Zappi DC, Moro MF, Meagher TR, Lughadha EN. 2017. Plant biodiversity drivers in Brazilian campos rupestres: insights from phylogenetic structure. Front Plant Sci. 8:1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.