2,653
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Habitat preference and vulnerability to drought of three Hypericum species of the páramo

ORCID Icon, ORCID Icon & ORCID Icon
Pages 281-295 | Received 23 Dec 2021, Accepted 01 Nov 2022, Published online: 12 Dec 2022

References

  • Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, et al. 2017. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol. 1(9):1285–1291. doi:10.1038/s41559-017-0248-x.
  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell NG, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, et al. 2010. A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag. 259(4):660–684. doi:10.1016/j.foreco.2009.09.001.
  • Anderegg WRL. 2015. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol. 205(3):1008–1014. doi:10.1111/nph.12907.
  • Anderegg WRL, Flint A, Huanf CY, Flint L, Berr JA, Davis FW, Sperry JS, Field CB. 2015. Tree mortality predicted from drought-induced vascular damage. Nat Geosci. 8(5):367–371. doi:10.1038/ngeo2400.
  • Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S. 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci. 113(18):5024–5029. doi:10.1073/pnas.1525678113.
  • Barrios N, Rondón D. 2014. Anatomía de la madera de tres especies de Ericaceae en el Páramo de la Culata, Mérida, Venezuela. Pittieria. 38:135–146.
  • Bradley RS, Vuille M, Diaz HF, Vergara W. 2006. Threats to water supplies in the tropical Andes. Science. 312:1755–1756. doi:10.1126/science.1128087.
  • Brodribb TJ, Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149(1):575–584. doi:10.1104/pp.108.129783.
  • Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG. 2005. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees. 19:296–304. doi:10.1007/s00468-004-0391-2.
  • Buytaert W, Célleri R, Bièvre B D, Cisneros F, Wyseure G, Deckers J, Hofstede R. 2006. Human impact on the hydrology of the Andean páramos. Earth Sci Rev. 79(1–2):53–72. doi:10.1016/j.earscirev.2006.06.002.
  • Buytaert W, Cuesta-Camacho F, Tobón C. 2011. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob Ecol Biogeogr. 20(1):19–33. doi:10.1111/j.1466-8238.2010.00585.x.
  • Cáceres Y, Llambí LD, Rada F. 2015. Shrubs as foundation species in a high tropical alpine ecosystem: a multi-scale analysis of plant spatial interactions. Plant Ecol Divers. 8(2):147–161. doi:10.1080/17550874.2014.960173.
  • Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn BE. 2018. Triggers of tree mortality under drought. Nature. 558:531–539. doi:10.1038/s41586-018-0240-x.
  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Field TS, Gleason SM, Hacke UG, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature. 491(7426):752–755. doi:10.1038/nature11688.
  • Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S. 2013. Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot. 64(15):4779–4791. doi:10.1093/jxb/ert193.
  • Cresso M, Clerici N, Sanchez A, Jaramillo F. 2020. Future climate change renders unsuitable conditions for paramo ecosystems in Colombia. Sustainability. 12(20):8373. doi:10.3390/su12208373.
  • Crockett S, Eberhardt M, Kunert O, Schühly W. 2010. Hypericum species in the Páramos of Central and South America: a special focus upon H. irazuense Kuntze ex N. Robson. Phytochem Rev. 9(2):255–269. doi:10.1007/s11101-009-9148-2.
  • Crockett S, Robson N. 2011. Taxonomy and chemotaxonomy of the genus Hypericum. Med Aromat Plant Sci Biotechnol. 5(Special Issue 1):1–13.
  • Cruz M, Lasso E. 2021. Insights into the functional ecology of páramo plants in Colombia. Biotropica. 53:1415–1431. doi:10.1111/btp.12992.
  • Diaz HF, Bradley RS, Ning L. 2014. Climatic changes in mountain regions of the American cordillera and the tropics: historical changes and future outlook. Arct Antarct Alp Res. 46(4):735–743. doi:10.1657/1938-4246-46.4.735.
  • Dobrowski SZ. 2011. A climatic basis for microrefugia: the influence of terrain on climate. Glob Change Biol. 17(2):1022–1035. doi:10.1111/j.1365-2486.2010.02263.x.
  • Donovan L, Linton M, Richards J. 2001. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia. 129:328–335. doi:10.1007/s004420100738.
  • Duursma R, Choat B. 2017. Fitplc - an R package to fit hydraulic vulnerability curves. J Plant Hydraul. 4:e002. doi:10.20870/jph.2017.e002.
  • FAO. 2009. Harmonized world soil database (version 1.1). Italy: FAO.
  • Fariñas M, Lazaro N, Monasterio M. 2008. Ecologia comparada de Hypericum laricifolium Juss. y de H. juniperium Kunth en el valle fluvioglacial del páramo de Mucubají. Mérida, Venezuela Ecotropicos. 21:75–88.
  • Feild TS, Brodribb T. 2001. Stem water transport and freeze–thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia. 127(3):314–320. doi:10.1007/s004420000603.
  • Fensham RJ, Fairfax RJ, Ward DP. 2009. Drought-induced tree death in savanna. Glob Change Biol. 15(2):380–387. doi:10.1111/j.1365-2486.2008.01718.x.
  • Flexas J, Medrano H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non–stomatal limitations revisited. Ann Bot. 89(2):183–189. doi:10.1093/aob/mcf027.
  • GRASS Development Team. 2017. Geographic Resources Analysis Support System (GRASS) software. Open Source Geospatial Foundation Project. [Accessed. 2017 May 18]. https://grass.osgeo.org/
  • Greenwood S, Ruiz-Benito P, Martínez-Vilalta J, Lloret F, Kitzberger T, Allen CD, Fensham R, Laughlin DC, Kattge J, Bönisch G, et al. 2017. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol Lett. 20(4):539–553. doi:10.1111/ele.12748.
  • Gutiérrez JM, Jones RG, Narisma GT, Alves LM, Amjad M, Gorodetskaya G IV, M KN, Krakovska S, Li J, Martínez-Castro D, et al. 2021. Atlas. In: Climate change 2021: the physical science basis. contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Masson-Delmotte V, Zhai P, Pirani A, SL C, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, MI G, Huang M, Leitzell K, Lonnoy E, JBR M, TK M, Waterfield T, Yelekçi O, Yu R Zhou B, editors. Cambridge University Press: Interactive Atlas available from http://interactive-atlas.ipcc.ch/
  • Hattab T, Garzón-López CX, Ewald M, Skowronek S, Aerts R, Horen H, Lenoir J, Gallet-Moron E, Spicher F, Decocq G, et al. 2017. A unified framework to model the potential and realized distributions of invasive species within the invaded range. null. 23(7):806–819. doi:10.1111/ddi.12566.
  • Haworth M, Killi D, Materassi A, Raschi A. 2015. Co-ordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control. Am J Bot. 102(5):677–688. doi:10.3732/ajb.1400508.
  • Hoffmann WA, Marchin RM, Abit P, Lau OL. 2011. Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Change Biol. 17(8):2731–2742. doi:10.1111/j.1365-2486.2011.02401.x.
  • Hofstede R. 1999. El páramo como espacio para la fijacion de carbono atmosferico. In: Medina G Mena P, editors. El Paramo Como Espacio De Mitigacion De Carbono Atmosferico. Quito: Ediciones Abya-Yala; pp. 3–6.
  • Hofstede R, Calles J, López V, Polanco R, Torres F, Ulloa J, Cerra M. 2014. Los Páramos Andinos ¿Qué Sabemos? Estado de conocimiento sobre el impacto del cambio climático en el ecosistema Páramo. Quito. [Accessed 2017 May 18]. https://portals.iucn.org/library/sites/library/files/documents/2014-025.pdf
  • Hribljan JA, Suarez E, Bourgeau-Chavez L, Endres S, Lilleskov EA, Chimbolema S, Wayson C, Serocki E, Chimner RA. 2017. Multidate, multisensor remote sensing reveals high density of carbon-rich mountain peatlands in the páramo of Ecuador. Glob Change Biol. 23(12):5412–5425. doi:10.1111/gcb.13807.
  • IDEAM. 2021. Consulta y descarga de datos meteorológicos de Colombia. [Accessed. 2021 June 2]. http://dhime.ideam.gov.co/atencionciudadano/
  • IGAC. 2000. Estudio General De Suelos Del Departamento De Cundinamarca. Bogotá, Colombia: Instituto Geográfico Agustín Codazzi.
  • Jolliffe IT. 2002. Mathematical and statistical properties of sample principal components. In: Principal component analysis. springer series in statistics. New York, NY: Springer. doi:10.1007/0-387-22440-8_3
  • Klein T, Zeppel MJB, Anderegg WRL, Bloemen J, De Kauwe MG, Hudson P, Ruehr NK, Powell TL, von Arx G, Nardini A. 2018. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecol Res. 33:839–855. doi:10.1007/s11284-018-1588-y.
  • Körner C, Hiltbrunner E. 2018. The 90 ways to describe plant temperature. Perspect Plant Ecol Evol Syst. 30:16–21. doi:10.1016/j.ppees.2017.04.004.
  • Körner C, Hiltbrunner E. 2021. Why is the Alpine flora comparatively robust against climatic warming? Diversity. 13:383. doi:10.3390/d13080383.
  • Kraft NJB, Metz MR, Condit RS, Chave J. 2010. The relationship between wood density and mortality in a global tropical forest data set. New Phytol. 188(4):1124–1136. doi:10.1111/j.1469-8137.2010.03444.x.
  • Kumagai T, Porporato A. 2012. Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? Plant Cell Environ. 35(1):61–71. doi:10.1111/j.1365-3040.2011.02428.x.
  • Kursar TA, Engelbrecht BMJ, Burke A, Turee MT, Omari BE, Giraldo JP. 2009. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct Ecol. 23(1):93–102. doi:10.1111/j.1365-2435.2008.01483.x.
  • Kuznetsova A, Brockhoff PB, Christensen RHB. 2017. lmerTest package: tests in linear mixed effects models. J Stat Softw. 82(13):1–26. doi:10.18637/jss.v082.i13.
  • Lenoir J, Graae BJ, Aarrestad PA, Alsos IG, Armbruster WS, Austrheim G, Bergendorff C, Birks HJ, Brathen KA, Brunet J, et al. 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob Change Biol. 19(5):1470–1481. doi:10.1111/gcb.12129.
  • Leon-Garcia IV, Lasso E . 2019. High heat tolerance in plants from the Andean highlands: implications for páramos in a warmer world. PLoS ONE. 14(11):e0224218. doi:10.1371/journal.pone.0224218.
  • León-H WJ, Gámez-A LE. 2018. Anatomía de la madera de ocho especies de Pentacalia (Asteraceae) en Venezuela. Caldasia. 40(1):41–53. doi:10.15446/caldasia.v40n1.65722.
  • Liu X, Chen B. 2000. Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol. 20(14):1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729:AID-JOC556>3.0.CO;2-Y.
  • Llambí LD, Fonataine M, Rada F, Saugier B, Sarmiento L. 2003. Ecophysiology of dominant plant species during secondary succession in a high Andean páramo ecosystem. Arct Antarct Alp Res. 35(4):447–453. doi:10.1657/1523-0430(2003)035[0447:EODPSD]2.0.CO;2.
  • Llambí LD, Rada F. 2019. Ecological research in the tropical alpine ecosystems of the Venezuelan páramo: past, present and future. Plant Ecol Divers. 12(6):519–538. doi:10.1080/17550874.2019.1680762.
  • Markesteijn L, Poorter L, Bongers F, Paz H, Sack L. 2011. Hydraulics and life history of tropical dry forest tree species: coordination of species’ drought and shade tolerance. New Phytol. 191(2):480–495. doi:10.1111/j.1469-8137.2011.03708.x.
  • Martínez-Garza C, Bongers F, Poorter L. 2013. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For Ecol Manag. 303:35–45. doi:10.1016/j.foreco.2013.03.046.
  • Mayr S, Gruber A, Bauer H. 2003. Repeated freeze–thaw cycles induce embolism in drought stressed conifers (Norway spruce, stone pine). Planta. 217(3):436–441. doi:10.1007/s00425-003-0997-4.
  • McDowell N. 2011. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155(3):1051–1059. doi:10.1104/pp.110.170704.
  • McDowell N, Allen CD, Anderson-Teixeira K, Brando P, Brienen R, Chambers J, Christoffersen B, Davies S, Doughty C, Duque A, et al. 2018. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219(3):851–869. doi:10.1111/nph.15027.
  • Meinzer FC, McCulloh KA. 2013. Xylem recovery from drought-induced embolism: where is the hydraulic point of no return? Tree Physiol. 33(4):331–334. doi:10.1093/treephys/tpt022.
  • Meinzer FC, McCulloh KA, Lachenbruch B, Woodruff DR, Johnson DM. 2010. The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia. 164:287–296. doi:10.1007/s00442-010-1734-x.
  • Nardini A, Battistuzzo M, Savi T. 2013. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. 200(2):322–329. doi:10.1111/nph.12288.
  • Ogle DH, Doll JC, Wheeler P, Dinno A. 2022. FSA: fisheries stock analysis. R package version 0.9.3. https://github.com/fishR-Core-Team/FSA.
  • Olivera MCM, Cleef AM. 2009. A phytosociological study of the páramo along two altitudinal transects in El Carchi Province, northern Ecuador. Phytocoenologia. 39:79–107. doi:10.1127/0340-269X/2009/0039-0079.
  • Opedal ØH, Armbruster SW, Graae SW. 2015. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol Divers. 8(3):305–315. doi:10.1080/17550874.2014.987330.
  • Peyre G, Lenoir J, Karger DN, Gomez M, Gonzalez A, Broennimann O, Guisan A, Jiménez‐alfaro B. 2020. The fate of Páramo plant assemblages in the sky islands of the northern Andes. J Veg Sci. 31(6):967–980. doi:10.1111/jvs.12898.
  • Pittermann J, Sperry JS. 2003. Tracheid diameter is the key trait determining the extent of freezing‐induced embolism in conifers. Tree Physiol. 23(13):907–914. doi:10.1093/treephys/23.13.907.
  • Pivovaroff AL, Wolfe BT, McDowell N, Christoffersen B, Davies S, Dickman LT, Grossiord C, Leff RT, Rogers A, Serbin SP, et al. 2021. Hydraulic architecture explains species moisture dependency but not mortality rates across a tropical rainfall gradient. Biotropica. 53(4):1213–1225. doi:10.1111/btp.12964.
  • Powers JS, Vargas GG, Brodribb TJ, Schwartz NB, Pérez-Aviles D, Smith-Martin CM, Becknell JM, Aureli F, Blanco R, Calderón-Morales E, et al. 2020. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob Change Biol. 26(5):3122–3133. doi:10.1111/gcb.15037.
  • QGIS Development Team. 2018. QGIS Geographic information system. Open Source Geospatial Foundation Project. [Accessed. 2017 May 18]. http://qgis.osgeo.org.
  • Quesada-Román A, Ballesteros-Cánovas JA, Guillet S, Madrigal-González J, Stoffel M. 2020. Neotropical Hypericum irazuense shrubs reveal recent ENSO variability in Costa Rican páramo. Dendrochronologia. 61:125704. doi:10.1016/j.dendro.2020.125704.
  • Rada F, Azócar A, García-Núñez C. 2019. Plant functional diversity in tropical Andean páramos. Plant Ecol Div. 12(6):539–553. doi:10.1080/17550874.2019.1674396.
  • Ramírez LA, Rada F, Llambí LD. 2015. Linking patterns and processes through ecosystem engineering: effects of shrubs on microhabitat and water status of associated plants in the high tropical Andes. Plant Ecol. 216(2):213–225. doi:10.1007/s11258-014-0429-5.
  • R Core Team. 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Robson DJ, Petty JA, PETTY JA. 1987. Freezing in conifer xylem. I. Pressure changes and growth velocity of ice. J Exp Bot. 39(11):1617–1621. doi:10.1093/jxb/38.11.1901.
  • Sade N, Gebremedhin A, Moshelion M. 2012. Risk-taking plants: anisohydric behavior as a stress-resistance trait. Plant Signal Behav. 7(7):767–770. doi:10.4161/psb.20505.
  • Sarmiento L, Llambí LD, Escalona A, Marquez N. 2003. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166(1):145–156. doi:10.1023/A:1023262724696.
  • Scherrer D, Körner C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr. 38(2):406–416. doi:10.1111/j.1365-2699.2010.02407.x.
  • Scholz A, Klepsch M, Karimi Z, Jansen S. 2013. How to quantify conduits in wood? Front Plant Sci. 4:1–11. doi:10.3389/fpls.2013.00056.
  • Sklenář P, Kucerová A, Macková J, Macek P. 2015. Temporal variation of climate in the high elevation páramo of Antisana, Ecuador. Geogr Fis Dinam Quat. 38:67–78. doi:10.4461/GFDQ.2015.38.07.
  • Sklenář P, Kucerová A, Macková J, Romoleroux K. 2016. Temperature microclimates of plants in a tropical alpine environment: how much does growth form matter? Arct Antarct Alp Res. 48(1):61–78. doi:10.1657/AAAR0014-084.
  • Soukup A, Pecková E, Ježková B, Sklenář P. 2021. Structural adaptations in plants from the humid equatorial Andes indicate a trade-off between hydraulic transport efficiency and safety. Am J Bot. 108(11):2127–2142. doi:10.1002/ajb2.1799.
  • Sperry JS, Hacke UG, Pittermann J. 2006. Size and function in conifer tracheids and angiosperm vessels. Am J Bot. 93(10):1490–1500. doi:10.3732/ajb.93.10.1490.
  • Sperry JS, Love DM. 2015. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207(1):14–27. doi:10.1111/nph.13354.
  • Torres-Ruiz JM, Sperry JS, Fernández JE. 2012. Improving xylem hydraulic conductivity measurements by correcting the error caused by passive water uptake. Physiol Plant. 146(2):129–135. doi:10.1111/j.1399-3054.2012.01619.x.
  • Turner NC. 1988. Measurement of plant water status by the pressure chamber technique. Irrig Sci. 9(4):289–308. doi:10.1007/BF00296704.
  • Tyree MT, Sperry JS. 1989. Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Phys Mol Bio. 40(1):19–38. doi:10.1146/annurev.pp.40.060189.000315.
  • Urrutia R, Vuille M. 2009. Climate change projections for the tropical Andes using a regional climate change model: temperature and precipitation simulations for the 21st century. J Geophys Res. 114(D2):1–15. doi:10.1029/2008JD011021.
  • Valencia JB, Mesa J, León JG, Madriñán S, Cortés AJ. 2020. Climate vulnerability assessment of the Espeletia complex on Páramo sky islands in the northern Andes. Front Ecol Evol. 8:309. doi:10.3389/fevo.2020.565708.
  • Vincent QV. 2011. Ggbiplot: a ggplot2 based biplot. R package version 0.55. http://github.com/vqv/ggbiplot.
  • Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino‐mayer HD, et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang. 3(3):292–297. doi:10.1038/nclimate1693.
  • Zavala JA, Ravetta DA. 2001. The effect of irrigation regime on biomass and resin production in Grindelia chiloensis. Field Crops Res. 69(3):227–236. doi:10.1016/S0378-4290(00)00146-5.