219
Views
2
CrossRef citations to date
0
Altmetric
Articles

Sea surface temperature effects on the modelled track and intensity of tropical cyclone Gonu

, &
Pages 89-105 | Received 01 Feb 2020, Accepted 17 Mar 2021, Published online: 07 Apr 2021

References

  • Alimohammadi M, Malakooti H. 2018. Sensitivity of simulated cyclone Gonu intensity and track to variety of parameterizations: Advanced hurricane WRF model application. J Earth Syst Sci. 127(3):41.
  • Andreas EL, Emanuel KA. 2001. Effects of sea spray on tropical cyclone intensity. J Atmos Sci. 58(24):3741–3751.
  • Bender MA, Ginis I. 2000. Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon Weather Rev. 128(4):917–946.
  • Bender MA, Ginis I, Tuleya R, Thomas B, Marchok T. 2007. The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon Weather Rev. 135(12):3965–3989.
  • Cao X, Wu R, Bi M. 2018. Contributions of different time-scale variations to tropical cyclogenesis over the western North Pacific. Journal of Climate. 31(8):3137–3153.
  • Chen S, Campbell TJ, Jin H, Gaberšek S, Hodur RM, Martin P. 2010. Effect of two-way air–sea coupling in high and low wind speed regimes. Mon Weather Rev. 138(9):3579–3602.
  • Chen SS, Price JF, Zhao W, Donelan MA, Walsh EJ. 2007. The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull Am Meteorol Soc. 88(3):311–318.
  • Chen Y, Zhang F, Green BW, Yu X. 2018. Impacts of ocean cooling and reduced wind drag on hurricane Katrina (2005) based on numerical simulations. Mon Weather Rev. 146(1):287–306.
  • Cione JJ, Uhlhorn EW. 2003. Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon Weather Rev. 131(8):1783–1796.
  • Craig GC, Gray SL. 1996. CISK or WISHE as the mechanism for tropical cyclone intensification. J Atmos Sci. 53(23):3528–3540.
  • Das Y, Mohanty UC, Jain I. 2017. Numerical simulation on Bay of Bengal's response to cyclones using the Princeton ocean model. Braz J Oceanogr. 65(2):128–145.
  • Davis CA, Bosart LF. 2001. Numerical simulations of the genesis of Hurricane Diana (1984). Part I: Control simulation. Mon Weather Rev. 129(8):1859–1881.
  • Davis C, Wang W, Chen SS, Chen Y, Corbosiero K, DeMaria M, Dudhia J, Holland G, Klemp J, Michalakes J, et al. 2008. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon Weather Rev. 136(6):1990–2005.
  • Davis C, Wang W, Dudhia J, Torn R. 2010. Does increased horizontal resolution improve hurricane wind forecasts? Weather Forecast. 25(6):1826–1841.
  • DeMaria M, Kaplan J. 1994. Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J Clim. 7(9):1324–1334.
  • Deshpande M, Pattnaik S, Salvekar P. 2010. Impact of physical parameterization schemes on numerical simulation of super cyclone Gonu. Nat Hazards. 55(2):211–231.
  • Donelan M, Haus B, Reul N, Plant W, Stiassnie M, Graber H, Saltzman E. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett. 31(18):1–5.
  • Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci. 46(20):3077–3107.
  • Dudhia J, Hong S-Y, Lim K-S. 2008. A new method for representing mixed-phase particle fall speeds in bulk microphysics parameterizations. J Meteorol Soc Japan Ser II. 86A:33–44.
  • Emanuel KA. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J Atmos Sci. 43(6):585–605.
  • Emanuel KA. 1988. The maximum intensity of hurricanes. J Atmos Sci. 45(7):1143–1155.
  • Emanuel KA. 1997. Some aspects of hurricane inner-core dynamics and energetics. J Atmos Sci. 54(8):1014–1026.
  • Emanuel K, DesAutels C, Holloway C, Korty R. 2004. Environmental control of tropical cyclone intensity. J Atmos Sci. 61(7):843–858.
  • Evans JL. 1993. Sensitivity of tropical cyclone intensity to sea surface temperature. J Clim. 6(6):1133–1140.
  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB. 2003. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J Clim. 16(4):571–591.
  • Fairall CW, Bradley EF, Rogers DP, Edson JB, Young GS. 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res Oceans. 101(C2):3747–3764.
  • Fan Y, Ginis I, Hara T. 2009. The effect of wind–wave–current interaction on air–sea momentum fluxes and ocean response in tropical cyclones. J Phys Oceanogr. 39(4):1019–1034.
  • Gao S, Chen Z, Zhang W. 2018. Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J Clim. 31(2):853–862.
  • Glenn S, Miles T, Seroka G, Xu Y, Forney R, Yu F, Kohut J. 2016. Stratified coastal ocean interactions with tropical cyclones. Nat Commun. 7:10887.
  • Gray WM. 1968. Global view of the origin of tropical disturbances and storms. Mon Weather Rev. 96:669–700.
  • Gray WM. 1975. Tropical cyclone genesis. Tropical cyclone genesis (Doctoral dissertation, Colorado State University. Libraries).
  • Gray WM. 1979. Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorology over the tropical oceans. Roy. Meteor. Soc; p. 155–218.
  • Haidvogel DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, et al. 2008. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system. J Comput Phys. 227(7):3595–3624.
  • Halliwell Jr G, Shay LK, Brewster J, & Teague WJ. 2011. Evaluation and sensitivity analysis of an ocean model response to Hurricane Ivan. Mon Weather Rev. 139(3):921–945.
  • Hong SY, Dudhia J, Chen SH. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev. 132(1):103–120.
  • Hyun KH, He R. 2010. Coastal upwelling in the south Atlantic bight: A revisit of the 2003 cold event using long term observations and model hindcast solutions. J Mar Sys. 83(1-2):1–13.
  • IMD. 2008. Track of storm and depressions over the Indian Seas during 1891–2008; Cyclone e-Atlas published by IMD, http://www.imd.gov.in/section/nhac/dynamic/.
  • Jacob R, Larson J, Ong E. 2005. M × N communication and parallel interpolation in community climate system model version 3 using the model coupling toolkit. Int J High Perform Comput Appl. 19(3):293–307.
  • Jaimes B, Shay LK, Halliwell GR. 2011. The response of quasigeostrophic oceanic vortices to tropical cyclone forcing. J Phys Oceanogr. 41(10):1965–1985.
  • Jones PW. 1998. A user’s guide for SCRIP: A spherical coordinate remapping and interpolation package. Los Alamos, NM: Los Alamos National Laboratory.
  • Kain JS. 2004. The Kain–Fritsch convective parameterization: An update. J Appl Meteorol. 43(1):170–181.
  • Kanase R, Salvekar P. 2011. Numerical simulation of severe cyclonic storm LAILA (2010): Sensitivity to initial and Cumulus parameterization schemes. Paper presented at the proceedings of disaster risk vulnerability conference.
  • Kumar A, Done J, Dudhia J, Niyogi D. 2011. Simulations of cyclone sidr in the Bay of Bengal with a high-resolution model: Sensitivity to large-scale boundary forcing. Meteorol Atmos Phys. 114(3-4):123–137.
  • Large W, Pond S. 1981. Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr. 11(3):324–336.
  • Larson J, Jacob R, Ong E. 2005. The model coupling toolkit: A new Fortran90 toolkit for building multiphysics parallel coupled models. Int J High Perform Comput Appl. 19(3):277–292.
  • Lee CY, Chen SS. 2014. Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon Weather Rev. 142(5):1927–1944.
  • Merrill RT. 1988. Environmental influences on hurricane intensification. J Atmos Sci. 45(11):1678–1687.
  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmosph. 102(D14):16663–16682.
  • Mohandas S, Ashrit R. 2014. Sensitivity of different convective parameterization schemes on tropical cyclone prediction using a mesoscale model. Nat Hazards. 73(2):213–235.
  • Mukhopadhyay P, Taraphdar S, Goswami B. 2011. Influence of moist processes on track and intensity forecast of cyclones over the north Indian Ocean. J Geophys Res Atmos. 116(D5): 1–21.
  • Nelson J, He R. 2012. Effect of the gulf stream on winter extratropical cyclone outbreaks. Atmos Sci Lett. 13(4):311–316.
  • Noh Y, Cheon W, Hong S, Raasch S. 2003. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary Layer Meteorol. 107(2):401–427.
  • Olabarrieta M, Warner JC, Armstrong B, Zambon JB, He R. 2012. Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model. 43-44:112–137.
  • Osuri KK, Mohanty U, Routray A, Kulkarni MA, Mohapatra M. 2012. Customization of WRF-ARW model with physical parameterization schemes for the simulation of tropical cyclones over North Indian ocean. Nat Hazards. 63(3):1337–1359.
  • Osuri KK, Mohanty U, Routray A, Mohapatra M, Niyogi D. 2013. Real-time track prediction of tropical cyclones over the North Indian Ocean using the ARW model. J Appl Meteorol Climatol. 52(11):2476–2492.
  • Pattanayak S, Mohanty U. 2008. A comparative study on performance of MM5 and WRF models in simulation of tropical cyclones over Indian seas. Curr Sci. 95(7):00113891.
  • Pollard RT, Rhines PB, Thompson RO. 1972. The deepening of the wind-mixed layer. Geophys Astrophys Fluid Dyn. 4(1):381–404.
  • Prakash KR, Nigam T, Pant V. 2018. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model. Ocean Science. 14(2):259–272.
  • Prakash KR, Pant V. 2017. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model. Ocean Dyn. 67(1):51–64.
  • Price JF. 1981. Upper ocean response to a hurricane. J Phys Oceanogr. 11(2):153–175.
  • Price JF, Sanford TB, Forristall GZ. 1994. Forced stage response to a moving hurricane. J Phys Oceanogr. 24(2):233–260.
  • Pun IF, Lin II, Lien CC, Wu CC. 2018. Influence of the size of supertyphoon Megi (2010) on SST cooling. Mon Weather Rev. 146(3):661–677.
  • Ren D, Du J, Hua F, Yang Y. 2016. Analysis of different atmospheric physical parameterizations in COAWST modeling system for the Tropical Storm Nock-ten application. Natural Hazards. 82(2):903–920.
  • Ricchi A, Miglietta MM, Barbariol F, Benetazzo A, Bergamasco A, Bonaldo D, Cassardo C, Falcieri FM, Modugno G, Russo A, et al. 2017. Sensitivity of a Mediterranean tropical-like cyclone to different model configurations and coupling strategies. Atmosphere. 8(5):92.
  • Ricchi A, Miglietta MM, Bonaldo D, Cioni G, Rizza U, Carniel S. 2019. Multi-physics ensemble versus atmosphere–ocean coupled model simulations for a tropical-like cyclone in the Mediterranean Sea. Atmosphere. 10(4):202.
  • Seroka G, Miles T, Xu Y, Kohut J, Schofield O, Glenn S. 2016. Hurricane Irene sensitivity to stratified coastal ocean cooling. Mon Weather Rev. 144(9):3507–3530.
  • Shchepetkin AF, McWilliams JC. 2005. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 9(4):347–404.
  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG. 2005. A description of the advanced research WRF version 2.
  • Song Y, Haidvogel D. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J Comput Phys. 115(1):228–244.
  • Srinivas C, Mohan G, Rao DB, Baskaran R, Venkatraman B. 2017. Numerical simulations with WRF to study the impact of Sea surface temperature on the evolution of tropical cyclones over Bay of Bengal tropical cyclone activity over the North Indian Ocean (pp. 259–271): Springer.
  • Warner JC, Armstrong B, He R, Zambon JB. 2010. Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model. 35(3):230–244.
  • Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG. 2008. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput Geosci. 34(10):1284–1306.
  • World Meteorological Organization. 2008. Tropical cyclone operational plan for the Bay of Bengal and the Arabian Sea. [accessed 2008 June 1]. http://www.wmo.int/pages/prog/www/tcp/operational-plans.html. .
  • Xu J, Wang Y, Tan ZM. 2016. The relationship between sea surface temperature and maximum intensification rate of tropical cyclones in the North Atlantic. J Atmos Sci. 73(12):4979–4988.
  • Yablonsky RM, Ginis I. 2009. Limitation of one-dimensional ocean models for coupled hurricane–ocean model forecasts. Mon Weather Rev. 137(12):4410–4419.
  • Yablonsky RM, Ginis I. 2012. Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon Weather Rev. 141(3):997–1021.
  • Zambon JB, He R, Warner JC. 2014a. Investigation of hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn. 64(11):1535–1554.
  • Zambon JB, He R, Warner JC. 2014b. Tropical to extratropical: Marine environmental changes associated with superstorm sandy prior to its landfall. Geophys Res Lett. 41(24):8935–8943.
  • Zhao X, Chan JC. 2017. Changes in tropical cyclone intensity with translation speed and mixed-layer depth: Idealized WRF-ROMS coupled model simulations. Q J R Metereol Soc. 143(702):152–163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.