3,228
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Climate shocks, vulnerability, resilience and livelihoods in rural Zambia

ORCID Icon, & ORCID Icon
Pages 490-501 | Received 22 Sep 2022, Accepted 02 Aug 2023, Published online: 16 Aug 2023

References

  • Ahmed, S. A., Diffenbaugh, N. S., & Hertel, T. W. (2009). Climate volatility deepens poverty vulnerability in developing countries. Environmental Research Letters, 4(3), Article 0034004. https://doi.org/10.1088/1748-9326/4/3/034004
  • Alem, Y., Eggert, H., & Ruhinduka, R. (2015). Improving welfare through climate-friendly agriculture: The case of the system of rice intensification. Environmental and Resource Economics, 62(2), 243–263. https://doi.org/10.1007/s10640-015-9962-5
  • Alfani, F., Arslan, A., McCarthy, N., Cavatassi, R., & Sitko, N. (2019). Climate-change vulnerability in rural Zambia: the impact of an El Niño-induced shock on income and productivity, available at http://www.fao.org/3/CA3255EN/ca3255en.pdf
  • Al Mamun, A., Chapoto, A., Chisanga, B., D’Alessandro, S., Koo, J., Martin, W., & Samboko, P. (2018). Assessment of the Impacts of El Niño and Grain Trade Policy Responses in East and Southern Africa to the 2015–16 Event, available at http://www.ifpri.org/publication/assessment-el-ni%C3%B1o-impacts-and-grain-trade-policy-responses-east-and-southern-africa
  • Angelsen, A., & Dokken, T. (2018). Climate exposure, vulnerability and environmental reliance: A cross-section analysis of structural and stochastic poverty. Environment and Development Economics, 23(3), 257–278. https://doi.org/10.1017/S1355770X18000013
  • Azzarri, C., & Signorelli, S. (2020). Climate and poverty in Africa south of the sahara. World Development, 125, Article 104691. doi:https://doi.org/10.1016/j.worlddev.2019.104691
  • Barrett, C. B., & Carter, M. R. (2013). The economics of poverty traps and persistent poverty: Empirical and policy implications. Journal of Development Studies, 49(7), 976–990. https://doi.org/10.1080/00220388.2013.785527
  • Barrett, C. B., & Constas, M. A. (2014). Toward a theory of resilience for international development applications. Proceedings of the National Academy of Sciences, 111(40), 14625–14630. https://doi.org/10.1073/pnas.1320880111
  • Bonilla-Findji, O., Ortega, A., Ouedraogo, M., Fall, M., Chabi, A., Andrieu, N., Eitzinger, A., Zougmoré, R., & Läderach, P. (2020). How are smallholder farmers coping with and adapting to climate-related shocks in Kaffrine Climate-Smart Village, Senegal? https://cgspace.cgiar.org/handle/10568/111561
  • Braimoh, A., Mwanakasale, A., Chapoto, A., Rubaiza, R., Chisanga, B., Mubanga, N., Samboko, P., Giertz, A., & Obuya, G. (2018). Increasing agricultural resilience through better risk management in Zambia available at http://documents.worldbank.org/curated/en/330211524725320524/Increasing-agricultural-resilience-through-better-risk-management-in-Zambia
  • Chapoto, A., Banda, D. J., Haggblade, S., & Hamukwala, P. (2011). Factors Affecting Poverty Dynamics in Rural Zambia, available https://ageconsearch.umn.edu/record/109888/
  • Corbeels, M., Naudin, K., Whitbread, A. M., Kühne, R., & Letourmy, P. (2020). Limits of conservation agriculture to overcome low crop yields in sub-saharan Africa. Nature Food, 1(7), 447–454. https://doi.org/10.1038/s43016-020-0114-x
  • CSO. (2015). Living conditions monitoring survey Key findings. Central Statistics Office.
  • CSO/MAL/IAPRI. (2012). Rural agricultural livelihoods survey Lusaka.
  • CSO/MAL/IAPRI. (2015). Rural Agricultural Livelihoods Survey, available at www.iapri.org.zm/surveys
  • Diwakar, V., Subakanya, M., Lubungu, M., Chapoto, A., 2020. Rural poverty dynamics in Zambia: 2012-2019. Overseas development institute (ODI). London.
  • FAO. (2011). Women in agriculture: Closing the gender gap for development, The State of Food and Agriculture 2010-11. Rome, Italy: Food and Agriculture Organization (FAO).
  • Funk, C. C., Peterson, P. J., Landsfeld, M. F., Pedreros, D. H., Verdin, J. P., Rowland, J. D., Romero, B. E., Husak, G. J., Michaelsen, J. C., & Verdin, A. P. (2014). A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832, 4p. https://pubs.usgs.gov/ds/832/
  • Hamududu, B. H., & Ngoma, H. (2019). Impacts of climate change on water resources availability in Zambia: Implications for irrigation development, environment. Development and Sustainability, 1–22. https://doi.org/10.1007/s10668-019-00320-9.
  • Jain, S. (2007). An empirical economic assessment of impacts of climate change on agriculture in Zambia. World Bank Policy Research Working Paper.
  • Karfakis, P., Lipper, L., & Smulders, M. (2012). The assessment of the socioeconomic impacts of climate change at household level and policy implications, building resilience for adaptation to climate change in the agriculture sector. Food and agriculture organization of the united nations (FAO).
  • Matata, M. J., Ngigi, M. W., & Bett, H. K. (2023). Effects of cash transfers on household resilience to climate shocks in the arid and semi arid counties of northern Kenya. Development Studies Research, 10(1), https://doi.org/10.1080/21665095.2022.2164031
  • Michler, J. D., Baylis, K., Arends-Kuenning, M., & Mazvimavi, K. (2019). Conservation agriculture and climate resilience. Journal of Environmental Economics and Management, 93, 148–169. doi:https://doi.org/10.1016/j.jeem.2018.11.008
  • Mulenga, B. P., Richardson, R. B., Tembo, G., & Mapemba, L. (2014). Rural household participation in markets for non-timber forest products in Zambia. Environment and Development Economics, 19(4), 487–504. https://doi.org/10.1017/S1355770X13000569
  • Mulenga, B. P., Wineman, A., & Sitko, N. J. (2017). Climate trends and farmers’ perceptions of climate change in Zambia. Environmental Management, 59(2), 291–306. https://doi.org/10.1007/s00267-016-0780-5
  • Mwongera, C., Shikuku, K. M., Twyman, J., Läderach, P., Ampaire, E., Van Asten, P., Twomlow, S., & Winowiecki, L. A. (2017). Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies. Agricultural Systems, 151, 192–203. https://doi.org/10.1016/j.agsy.2016.05.009
  • Ngoma, H., Lupiya, P., Kabisa, M., & Hartley, F. (2021). Impacts of climate change on agriculture and household welfare in Zambia: An economy-wide analysis. Climatic Change, 167(3), 55. https://doi.org/10.1007/s10584-021-03168-z
  • Ngoma, H., Mason, M. N, Sitko, N. J. 2015. Does minimum tillage with planting basins or ripping raise maize yields? Meso-panel data evidence from Zambia. Agriculture, Ecosystems & Environment, 212: 21–29. https://doi.org/10.1016/j.agee.2015.06.021
  • Ngoma, H., Mulenga, B. P., & Jayne, T. S. (2016). Minimum tillage uptake and uptake intensity by smallholder farmers in Zambia. African Journal of Agricultural and Resource Economics, 11, 249–262.
  • Ngoma, H., Mulenga, P. M., Snyder, J., Banda, A., & Chapoto, A. (2019). Poverty and weather shocks: a panel data analysis of structural and stochastic poverty in Zambia available at http://www.iapri.org.zm/images/WorkingPapers/wp150_for_pdf_poverty_final.pdf
  • Patel, N., Chopra, P., & Dadhwal, V. (2007). Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications, 14, 329–336.
  • Petrie, M. D., Peters, D. P., Yao, J., Blair, J. M., Burruss, N. D., Collins, S. L., Derner, J. D., Gherardi, L. A., Hendrickson, J. R., Sala, O. E., & Starks, P. J. (2018). Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods. Global Change Biology, 24(5), 1935–1951. https://doi.org/10.1111/gcb.14024
  • Rahut, D. B., Aryal, J. P., & Marenya, P. (2021). Understanding climate-risk coping strategies among farm households: Evidence from five countries in eastern and Southern Africa. Science of the Total Environment, 769. https://doi.org/10.1016/j.scitotenv.2021.145236
  • Sesmero, J., Ricker-Gilbert, J., & Cook, A. (2018). How Do African farm households respond to changes in current and past weather patterns? A structural panel data analysis from Malawi. American Journal of Agricultural Economics, 100(1), 115–144. https://doi.org/10.1093/ajae/aax068
  • Skoufias, E., & Vinha, K. (2012). Climate variability and child height in rural Mexico. Economics & Human Biology, 10(1), 54–73. https://doi.org/10.1016/j.ehb.2011.06.001
  • Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T. S., Lamanna, C., & Eyre, J. X. (2017). How climate-smart is conservation agriculture (CA)? – its potential to deliver on adaptation, mitigation and productivity on smallholder farms in Southern Africa. Food Security, 9(3), 537–560. https://doi.org/10.1007/s12571-017-0665-3
  • Thurlow, J., Zhu, T., & Diao, X. (2012). Current climate variability and future climate change: Estimated growth and poverty impacts for Zambia. Review of Development Economics, 16(3), 394–411. https://doi.org/10.1111/j.1467-9361.2012.00670.x
  • Umar, B. B. (2021). Adapting to climate change through conservation agriculture: A gendered analysis of eastern Zambia. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.748300
  • Wineman, A., & Crawford, E. W. (2017). Climate change and crop choice in Zambia: A mathematical programming approach. NJAS: Wageningen Journal of Life Sciences, 81(1), 19–31. https://doi.org/10.1016/j.njas.2017.02.002
  • Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data (2nd ed.). MIT Press.
  • World Bank. (2018). Zambia climate-smart agriculture investment plan. Analyses to Support the Climate-Smart Development of Zambia’s Agriculture Sector. © World Bank, Washington, DC. http://hdl.handle.net/10986/31383 License: CC BY 3.0 IGO.” URI http://hdl.handle.net/10986/31383.