28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Harnessing molecular hybridization approach to discover novel quinoline EGFR-TK inhibitors for cancer treatment

, , , , , , ORCID Icon & show all
Pages 1087-1107 | Received 15 Jan 2024, Accepted 27 Mar 2024, Published online: 09 May 2024

References

  • Curado MP, Voti L, Sortino-Rachou AM. Cancer registration data and quality indicators in low and middle income countries: their interpretation and potential use for the improvement of cancer care. Cancer Caus. Control. 2009;20:751–756. doi:10.1007/s10552-008-9288-5
  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA: A. Cancer J. Clin. 2015;65:87–108. doi:10.3322/caac.21262
  • Demaria M, O'Leary MN, Chang J, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017;7:165–176. doi:10.1158/2159-8290.cd-16-0241
  • Chang J, Ren H, Zhao M, et al. Development of a series of novel 4-anlinoquinazoline derivatives possessing quinazoline skeleton: Design, synthesis, EGFR kinase inhibitory efficacy, and evaluation of anticancer activities in vitro. Eur. J. Med. Chem. 2017;138:669–688. doi:10.1016/j.ejmech.2017.07.005
  • Kasture VS, Musmade DS, Aher SJ, et al. Tyrosine kinases: promising targets for cancer chemotherapy. Med. Chem. Drug Discov. 2012;2:37–51. doi:10.3390/ijms222111659
  • Huang M, Shen A, Ding J, et al. Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol. Sci. 2014;35:41–50. doi:10.1016/j.tips.2013.11.004
  • Nasser AA, Eissa IH, Oun MR, et al. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFRWT and EGFRT790M. Org. Biomol. Chem. 2020;18:7608–7634. doi:10.1039/d0ob01557a
  • Elshaier YAMM, Shaaban MA, Abd El Hamid MK, et al. Design and synthesis of pyrazolo[3,4-d]pyrimidines: nitric oxide releasing compounds targeting hepatocellular carcinoma. Bioorg. Med. Chem. 2017;25:2956–2970. doi:10.1016/j.bmc.2017.03.002
  • Chen Y, Wu J, Wang A, et al. Discovery of N-(5-((5-chloro-4-((2-(isopropylsulfonyl)phenyl)amino)pyrimidin-2-yl)amino)-4-methoxy-2-(4-methyl-1,4-diazepan-1-yl)phenyl)acrylamide (CHMFL-ALK/EGFR-050) as a potent ALK/EGFR dual kinase inhibitor capable of overcoming a variety of ALK/EGFR associated drug resistant mutants in NSCLC. Eur. J. Med. Chem. 2017;139:674–697. doi:10.1016/j.ejmech.2017.08.035
  • Gaber AA, Bayoumi AH, El-morsy AM, et al. Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg. Chem. 2018;80:375–395. doi:10.1016/j.bioorg.2018.06.017
  • Al-Warhi T, Al-Karmalawy AA, Elmaaty AA, et al. Biological evaluation, docking studies, and in silico ADME prediction of some pyrimidine and pyridine derivatives as potential EGFRWT and EGFRT790M inhibitors. J. Enzyme Inhib. Med. Chem. 2023;38:176–191. doi:10.1080/14756366.2022.2135512
  • He J, Zhou Z, Sun X, et al. The new opportunities in medicinal chemistry of fourth-generation EGFR inhibitors to overcome C797S mutation. Eur. J. Med. Chem. 2021;210:112995–1121005. doi:10.1016/j.ejmech.2020.112995
  • Zheng M, Huo J, Gu X, et al. Rational design and synthesis of novel dual PROTACs for simultaneous degradation of EGFR and PARP. J. Med. Chem. 2021;64:7839–7852. doi:10.1021/acs.jmedchem.1c00649
  • Allam HA, Aly EE, Farouk AKBAW, et al. Design and Synthesis of some new 2,4,6-trisubstituted quinazoline EGFR inhibitors as targeted anticancer agents. Bioorg. Chem. 2020;98:103726–103738. doi:10.1016/j.bioorg.2020.103726
  • Eissa AAM, Aljamal KFM, Ibrahim HS, et al. Design and synthesis of novel pyridopyrimidine derivatives with anchoring non-coplanar aromatic extensions of EGFR inhibitory activity. Bioorg. Chem. 2021;116:105318–105327. doi:10.1016/j.bioorg.2021.105318
  • Mohassab AM, Hassan HA, Abdelhamid D, et al. Design and synthesis of novel quinoline/chalcone/1,2,4-triazole hybrids as potent antiproliferative agent targeting EGFR and BRAFV600E kinases. Bioorg. Chem. 2021;106:104510–104522. doi:10.1016/j.bioorg.2020.104510
  • Wu C-H, Coumar MS, Chu C-Y, et al. Design and synthesis of Tetrahydropyridothieno[2,3-d]pyrimidine scaffold based epidermal growth factor receptor (EGFR) kinase inhibitors: the role of side chain chirality and Michael Acceptor Group for maximal potency. J. Med. Chem. 2010;53:7316–7326. doi:10.1021/jm100607r
  • Saito H, Fukuhara T, Furuya N, et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, Phase III trial. Lancet Oncol. 2019;20:625–635. doi:10.1016/S1470-2045(19)30035-X
  • Nakagawa K, Garon EB, Seto T, et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): a randomised, double-blind, placebo-controlled, Phase III trial. The Lancet Oncol. 2019;20:1655–1669. doi:10.1016/S1470-2045(19)30634-5
  • Noronha V, Patil VM, Joshi A, et al. Gefitinib versus gefitinib plus pemetrexed and carboplatin chemotherapy in EGFR-mutated lung cancer. J. Clin. Oncol. 2019;38:124–136. doi:10.1200/jco.19.01154
  • Zhong W-Z, Wang Q, Mao W-M, et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC: final overall survival analysis of CTONG1104 phase III trial. J. Clin. Oncol. 2021;39:713. doi:10.1200/JCO.20.01820
  • Kim Y, Lee S-H, Ahn JS, et al. Efficacy and safety of Afatinib for EGFR-mutant non-small-cell lung cancer, compared with gefitinib or erlotinib. Off. J. Korean Cancer Assoc. 2019;51:502–509. doi:10.4143/crt.2018.117
  • Ayati A, Moghimi S, Salarinejad S, et al. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem. 2020;99:103811–103820. doi:10.1016/j.bioorg.2020.103811
  • Lee AR, Lee S, Shin JY, et al. Biomarker LEPRE1 induces pelitinib-specific drug responsiveness by regulating ABCG2 expression and tumor transition states in human leukemia and lung cancer. Sci. Rep. 2022;12:2928–2940. doi:10.1038/s41598-022-06621-w
  • Yadav P, Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem. 2021;109:104639. doi:10.1016/j.bioorg.2021.104639
  • Goldman J, Bueno AM, Dooms C, et al. Neratinib efficacy in patients with EGFR exon 18-mutant non-small-cell lung cancer: findings from the SUMMIT basket trial. Eur. J. Cancer. 2022;174–188:S82. doi:10.1016/S0959-8049(22)01017-6
  • Herman KD, Wright CG, Marriott HM, et al. The EGFR/ErbB inhibitor neratinib modifies the neutrophil phosphoproteome and promotes apoptosis and clearance by airway macrophages. Front. Immunol. 2022;13:956991–956999. doi:10.3389/fimmu.2022.956991
  • Zou M, Li J, Jin B, et al. Design, synthesis and anticancer evaluation of new 4-anilinoquinoline-3-carbonitrile derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg. Chem. 2021;114:105200. doi:10.1016/j.bioorg.2021.105200
  • Kim Y, Ko J, Cui Z, et al. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol. Cancer Ther. 2012;11:784–791. doi:10.1158/1535-7163.mct-11-0750
  • Sequist LV, Besse B, Lynch TJ, et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a Phase II trial in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 2010;28:3076–3083. doi:10.1200/jco.2009.27.9414
  • Ding S, Gao Z, Hu Z, et al. Design, synthesis and biological evaluation of novel osimertinib derivatives as reversible EGFR kinase inhibitors. Eur. J. Med. Chem. 2022;238:114492–114501. doi:10.1016/j.ejmech.2022.114492
  • Ayati A, Moghimi S, Toolabi M, et al. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur. J. Med. Chem. 2021;221:113523–113531. doi:10.1016/j.ejmech.2021.113523
  • Hu X, Tang S, Yang F, et al. Design, synthesis, and antitumor activity of olmutinib derivatives containing acrylamide moiety. Molecules 2021;26:3041–3055. doi:10.3390/molecules26103041
  • Elkaeed EB, Yousef RG, Elkady H, et al. New anticancer theobromine derivative targeting EGFRWT and EGFRT790M: design, semi-synthesis, in silico, and in vitro anticancer studies. Molecules 2022;27:5859–5870. doi:10.3390/molecules27185859
  • Mansour MA, AboulMagd AM, Abbas SH, et al. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small-cell lung cancer resistance: a critical review. RSC Adv. 2023;13:18825–18853. doi:10.1039/D3RA02347H
  • Matada BS, Pattanashettar R, Yernale NG. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021;32:115973–115991. doi:10.1016/j.bmc.2020.115973
  • Ibrahim DA, Abou El Ella DA, El-Motwally AM, et al. Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity. Eur. J. Med. Chem. 2015;102:115–131. doi:10.1016/j.ejmech.2015.07.030
  • Zaraei S-O, Al-Ach NN, Anbar HS, et al. Design and synthesis of new quinoline derivatives as selective C-RAF kinase inhibitors with potent anticancer activity. Eur. J. Med. Chem. 2022;238:114434. doi:10.1016/j.ejmech.2022.114434
  • Othman DI, Selim KB, Magda A-A, et al. Design, synthesis and anticancer evaluation of new substituted thiophene-quinoline derivatives. Bioorg. Med. Chem. 2019;27:115026. doi:10.1016/j.bmc.2019.07.042
  • Tang Z, Peng Y, Liu F. Design and synthesis of novel quinoline derivatives bearing oxadiazole, isoxazoline, triazolothiadiazole, triazolothiadiazine, and piperazine moieties. J. Heterocycl. Chem. 2020;57:2330–2338. doi:10.1002/jhet.3907
  • Jin G, Li Z, Xiao F, et al. Optimization of activity localization of quinoline derivatives: design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorg. Chem. 2020;99:103837–103849. doi:10.1016/j.bioorg.2020.103837
  • Jin G, Xiao F, Li Z, et al. Design, synthesis, and dual evaluation of quinoline and quinolinium iodide salt derivatives as potential anticancer and antibacterial agents. ChemMedChem. 2020;15:600–609. doi:10.1002/cmdc.202000002
  • Fu H-G, Li Z-W, Hu X-X, et al. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents. Molecules. 2019;24:548–561. doi:10.3390/molecules24030548
  • Kaur R, Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021;215:113220–113229. doi:10.1016/j.ejmech.2021.113220
  • Wang M, Zhang G, Zhao J, et al. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem. 2021;214:113208. doi:10.1016/j.ejmech.2021.113208
  • Ghanim AM, Girgis AS, Kariuki BM, et al. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem. 2022;119:105557–105569. doi:10.1016/j.bioorg.2021.105557
  • Chaaban I, Rizk OH, Ibrahim TM, et al. Synthesis, anti-inflammatory screening, molecular docking, and COX-1,2/-5-LOX inhibition profile of some novel quinoline derivatives. Bioorg. Chem. 2018;78:220–235. doi:10.1016/j.bioorg.2018.03.023
  • Nikookar H, Mohammadi-Khanaposhtani M, Imanparast S, et al. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem. 2018;77:280–286. doi:10.1016/j.bioorg.2018.01.025
  • Ganesan M, Raja KK, Narasimhan K, et al. Design, synthesis, α-amylase inhibition and in silico docking study of novel quinoline bearing proline derivatives. J. Mol. Struct. 2020;1208:127873–127881. doi:10.1016/j.molstruc.2020.127873
  • Aly RM, Serya RA, El-Motwally AM, et al. Novel quinoline-3-carboxamides (Part 2): Design, optimization and synthesis of quinoline based scaffold as EGFR inhibitors with potent anticancer activity. Bioorg. Chem. 2017;75:368–392. doi:10.1016/j.bioorg.2017.10.018
  • Batran RZ, El-Daly SM, El-Kashak WA, et al. Design, synthesis, and molecular modeling of quinoline-based derivatives as anti-breast cancer agents targeting EGFR/AKT signaling pathway. Chem. Biol. Drug Design. 2022;99:470–482. doi:10.1111/cbdd.14012
  • Kardile RA, Sarkate AP, Lokwani DK, et al. Design, synthesis, and biological evaluation of novel quinoline derivatives as small molecule mutant EGFR inhibitors targeting resistance in NSCLC: in vitro screening and ADME predictions. Eur. J. Med. Chem. 2023;245:114889–114899. doi:10.1016/j.ejmech.2022.114889
  • Nicolaï E, Güngör T, Goyard J, et al. Synthesis and aldose reductase inhibitory activity of N-(quinolinyl thiocarbonyl) glycine derivatives. Eur. J. Med. Chem. 1992;27:977–984. doi:10.1016/0223-5234(92)90032-V
  • Huang L, Yang L, Wan J-P, et al. Metal-free three-component assemblies of anilines, α-keto acids and alkyl lactates for quinoline synthesis and their anti-inflammatory activity. Org. Biomol. Chem. 2022;20:4385–4390. doi:10.1039/d2ob00661h
  • Hamdy R, Elseginy SA, Ziedan NI, et al. New quinoline-based heterocycles as anticancer agents targeting Bcl-2. Molecules. 2019;24:1274–1283. doi:10.3390/molecules24071274
  • Baba-Ahmed I, Kibou Z, Daoud I, et al. Synthesis, molecular docking and ADME-TOX studies of new tacrine analogs as promising for Alzheimer's disease therapy. Curr. Org. Chem. 2022;26:1218–1233. doi:10.2174/1385272826666220914114544
  • Tokalı FS, Taslimi P, Demircioğlu İH, et al. Novel phenolic Mannich base derivatives: synthesis, bioactivity, molecular docking, and ADME-Tox Studies. J. Iran Chem. Soc. 2022;19:563–577. doi:10.1007/s13738-021-02331-8
  • Mellado M, González C, Mella J, et al. Combined 3D-QSAR and docking analysis for the design and synthesis of chalcones as potent and selective monoamine oxidase B inhibitors. Bioorg. Chem. 2021;108:104689. doi:10.1016/j.bioorg.2021.104689
  • Tilekar K, Upadhyay N, Meyer-Almes F-J, et al. Synthesis and biological evaluation of pyrazoline and pyrrolidine-2,5-dione hybrids as potential antitumor agents. ChemMedChem. 2020;15:1813–1825. doi:10.1002/cmdc.202000458
  • Liu F, Yang J-F, Liu H, et al. Facile microwave-assisted synthesis of 1,3,5-trisubstituted pyrazoline derivatives incorporating sulfonyl moiety. J. Chin. Chem. Soc. 2016;63:254–260. doi:10.1002/jccs.201500385
  • Inc C. Molecular Operating Environment (MOE). Montreal, QC, Canada: Chemical Computing Group Inc.; 2016.
  • Elmaaty AA, Alnajjar R, Hamed MI, et al. Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: theoretical study. RSC Adv. 2021;11:10027–10042. doi:10.1039/D0RA10674G
  • Elmaaty AA, Darwish KM, Khattab M, et al. In a search for potential drug candidates for combating COVID-19: computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins. J. Biomol. Struct. Dyn. 2022;40:8866–8893. doi:10.1080/07391102.2021.1918256
  • Abo Elmaaty A, Hamed MIA, Ismail MI, et al. Computational insights on the potential of some NSAIDs for treating COVID-19: priority set and lead optimization. Molecules. 2021;26:3772–3783. doi:10.3390/molecules26123772
  • Hamed MI, Darwish KM, Soltane R, et al. β-Blockers bearing hydroxyethylamine and hydroxyethylene as potential SARS-CoV-2 Mpro inhibitors: rational based design, in silico, in vitro, and SAR studies for lead optimization. RSC Adv. 2021;11:35536–35558. doi:10.1039/D1RA04820A
  • Elmaaty AA, Darwish KM, Chrouda A, et al. In silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity. ACS Omega. 2022;7:875–899. doi:10.1021/acsomega.1c05519
  • Elebeedy D, Badawy I, Elmaaty AA, et al. In vitro and computational insights revealing the potential inhibitory effect of Tanshinone IIA against influenza A virus. Comput. Biol. Med. 2022;141:105149–105160. doi:10.1016/j.compbiomed.2021.105149
  • Hammoud MM, Nageeb AS, Morsi MA, et al. Design, synthesis, biological evaluation, and SAR studies of novel cyclopentaquinoline derivatives as DNA intercalators, topoisomerase II inhibitors, and apoptotic inducers. New. J. Chem. 2022;46:11422–11436. doi:10.1039/d2nj01646j
  • Hammouda MM, Elmaaty AA, Nafie MS, et al. Design and synthesis of novel benzoazoninone derivatives as potential CBSIs and apoptotic inducers: In Vitro, in Vivo, molecular docking, molecular dynamics, and SAR studies. Bioorg. Chem. 2022;127:105995–1051003. doi:10.1016/j.bioorg.2022.105995
  • Saleh MA, Elmaaty AA, El Saeed HS, et al. Structure based design and synthesis of 3-(7-nitro-3-oxo-3,4-dihydroquinoxalin-2-yl)propanehydrazide derivatives as novel bacterial DNA-gyrase inhibitors: in-vitro, in-vivo, in-silico and SAR studies. Bioorg. Chem. 2022;129:106186. doi:10.1016/j.bioorg.2022.106186
  • Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002;277:46265–46272. doi:10.1074/jbc.M207135200
  • El-Shershaby MH, El-Gamal KM, Bayoumi AH, et al. The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. New. J. Chem. 2021;45:13986–14004. doi:10.1039/d1nj02838c
  • Hazem RM, Antar SA, Nafea YK, et al. Pirfenidone and vitamin D mitigate renal fibrosis induced by doxorubicin in mice with Ehrlich solid tumor. Life Sci. 2022;288:120185–120194. doi:10.1016/j.lfs.2021.120185
  • Kandeil A, Mostafa A, Kutkat O, et al. Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2. Pathogens. 2021;10:758–789. doi:10.3390/pathogens10060758
  • Mahmoud DB, Bakr MM, Al-karmalawy AA, et al. Scrutinizing the feasibility of nonionic surfactants to form isotropic bicelles of curcumin: a potential antiviral candidate against COVID-19. AAPS PharmSciTech. 2021;23:44–62. doi:10.1208/s12249-021-02197-2
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717–42727. doi:10.1038/srep42717
  • Pires DEV, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015;58:4066–4072. doi:10.1021/acs.jmedchem.5b00104
  • Ahn JW, Song YJ, Park K. In vitro anti-cancer effects of gefitinib via EGF receptor-targeted delivery on triple-negative breast cancer cells. Macromol. Res. 2023;31:837–842. doi:10.1007/s13233-023-00178-x
  • Kumar A, Kumar B, Bhatia R. Design, synthesis, molecular docking, and biological evaluation of Isatin-based fused heterocycles as epidermal growth factor receptor inhibitors. Assay Drug Dev. Technol. 2023;21:222–233. doi:10.1089/adt.2022.120
  • Chen F, Liu J, Flight RM, et al. Cellular origins of EGFR-driven lung cancer cells determine sensitivity to therapy. Adv. Sci. 2021;8:2101999–2102010. doi:10.1002/advs.202101999
  • Fayad E, Altalhi SA, Abualnaja MM, et al. Novel acrylate-based derivatives: design, synthesis, antiproliferative screening, and docking study as potential combretastatin analogues. ACS Omega. 2023;8:38394–38405. doi:10.1021/acsomega.3c05051
  • El-Lateef HMA, Saleem RM, Bazuhair MA, et al. Design, synthesis and tubulin polymerization inhibition activity of newly synthesized hydrazone-linked to combretastatin analogues as potential anticancer agents. J. Mol. Struct. 2023;1292:136190. doi:10.1016/j.molstruc.2023.136190
  • El-Demerdash A, Al-Karmalawy AA, Abdel-Aziz TM, et al. Investigating the structure-activity relationship of marine natural polyketides as promising SARS-CoV-2 main protease inhibitors. RSC Adv. 2021;11:31339–31363. doi:10.1039/D1RA05817G
  • Elebeedy D, Elkhatib WF, Kandeil A, et al. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Adv. 2021;11:29267–29286. doi:10.1039/D1RA05268C
  • Khattab M, Al-Karmalawy AA. Computational repurposing of benzimidazole anthelmintic drugs as potential colchicine binding site inhibitors. Future Med. Chem. 2021;13:1623–1638. doi:10.4155/fmc-2020-0273
  • Scalbert A, Morand C, Manach C, et al. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002;56:276–282. doi:10.1016/S0753-3322(02)00205-6
  • Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Delivery Rev. 2001;52:117–126. doi:10.1016/S0169-409X(01)00231-9
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 1997;23:3–25. doi:10.1016/S0169-409X(96)00423-1
  • Levy DD, Zeiger E, Escobar PA, et al. Recommended criteria for the evaluation of bacterial mutagenicity data (Ames test). Mutat. Research/Genet. Toxicol. Environ. Mutagen. 2019;848:403074–403083. doi:10.1016/j.mrgentox.2019.07.004
  • Roy S, Mathew M. Fluid flow modulates electrical activity in cardiac hERG potassium channels. J. Biol. Chem. 2018;293:4289–4303. doi:10.1074/jbc.RA117.000432
  • Sanguinetti MC. HERG1 channel agonists and cardiac arrhythmia. Curr. Opin. Pharmacol. 2014;15:22–27. doi:10.1016/j.coph.2013.11.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.