1,049
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Aggregation, carbon, nitrogen, and natural abundance of 13C and 15N in soils under no-tillage system fertilized with injection and surface application of pig slurry for five years

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all

References

  • Ndegwa PM, Hristov AN, Arogo J, et al. A review of ammonia emission mitigation techniques for concentrated animal feeding operations. Biosyst Eng San Diego. 2008;100(4):453–469. doi:10.1016/j.biosystemseng.2008.05.010.
  • Zaman M, Saggar S, Blennerhassett JD, et al. Effect of urease and nitrification inhibitors on N transformation, gaseous emissions of ammonia and nitrous oxide, pasture yield and N uptake in grazed pasture system. Soil Biol Biochem. 2009;41(6):1270–1280. doi:10.1016/j.soilbio.2009.03.011.
  • Chantigny MH, Rochette P, Angers DA, et al. Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry. Soil Sci Soc Am J. 2004;68(1):306–312. doi:10.2136/sssaj2004.3060.
  • Rochette P, Chantigny MH, Angers DA, et al. Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues. Can J Soil Sci. 2001;81(4):515–523. doi:10.4141/S00-044.
  • Aita C, Chantigny MH, Gonzatto R, et al. Winter-season gaseous nitrogen emissions in subtropical climate: impacts of pig slurry injection and nitrification inhibitor. J Environ Qual. 2019;48(5):1414. doi:10.2134/jeq2018.04.0137.
  • Loss A, Lourenzi CR, Mergen Júnior CA, et al. Carbon, nitrogen and natural abundance of 13C and 15N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil Tillage Res. 2017;166:52–58. doi:10.1016/j.still.2016.10.007.
  • Yagüe MR, Bosch-Serra AD, Antúnez M, et al. Pig slurry and mineral fertilization strategies effects on soil quality: macroaggregate stability and organic matter fractions. Sci. Total Environ. 2012;438:218–224. doi:10.1016/j.scitotenv.2012.08.063.
  • Dawson TE, Mambelli S, Plamboeck AH, et al. Stable isotopes in plant ecology. Annu Rev Ecol Syst. 2002;33(1):507–559. doi:10.1146/annurev.ecolsys.33.020602.095451.
  • Swap RJ, Aranibar JN, Dowty PR, et al. Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biol. 2004;10(3):350–358. doi:10.1111/j.1365-2486.2003.00702.x.
  • Wittmer MHOM, Auerswald K, Bai YF, et al. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Global Change Biol. 2010;16(2):605–616. doi:10.1111/j.1365-2486.2009.02033.x.
  • Loss A, Pereira MG, Costa EM, et al. Carbon, nitrogen and the natural abundance of 13C and 15N in macro and microaggregates. Idesia. 2014;32(4):15–21. doi:10.4067/S0718-34292014000400003.
  • Del Galdo I, Six J, Peressotti A, et al. Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable isotopes. Global Change Biol. 2003;9(8):1204–1213. doi:10.1046/j.1365-2486.2003.00657.x.
  • Six J, Feller C, Denef K, et al. Soil carbon matter, biota and aggregation in temperate and tropical soils: effects of no-tillage. Agronomie. 2002;22(7-8):755–775. doi:10.1051/agro:2002043.
  • Barthès B, Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion: validation at several levels. Catena. 2002;47(2):133–149. doi:10.1016/S0341-8162(01)00180-1.
  • Bottinelli N, Angers DA, Hallaire V, et al. Tillage and fertilization practices affect soil aggregate stability in a Humic Cambisol of Northwest France. Soil Tillage Res. 2017;170:14–17. doi:10.1016/j.still.2017.02.008.
  • Jiao Y, Whalen JK, Hendershot WH. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma. 2006;134(1-2):24–33. doi:10.1016/j.geoderma.2005.08.012.
  • Mikha MM, Rice CW. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Sci Soc Am J. 2004;68(3):809–816. doi:10.2136/sssaj2004.8090.
  • Whalen JK, Hu Q, Liu A. Manure applications improve aggregate stability in conventional and no-tillage systems. Soil Sci Soc Am J. 2003;67(6):1842–1847. doi:10.2136/sssaj2003.1842.
  • He YT, Zhang WJ, Xu MG, et al. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. Sci Total Environ. 2015;532:635–644. doi:10.1016/j.scitotenv.2015.06.011.
  • Lourenzi CR, Ceretta CA, Silva LSD, et al. Nutrients in soil layers under no tillage after successive pig slurry applications. Rev Bras Ciênc Solo. 2013;37(1):157–167. doi:10.1590/S0100-06832013000100016.
  • Mergen Junior CA, Loss A, Santos Junior E, et al. Atributos químicos em agregados biogênicos e fisiogênicos de solo submetido à aplicação com dejetos suínos. Agraria. 2019;14(1):1–10. doi:10.5039/agraria.v14i1a5620.
  • Andrade AP, Rauber LP, Mafra AL, et al. Changes in physical properties and organic carbono of a Kandiudox fertilized with manure. Cienc Rural. 2016;46(5):809–814. doi:10.1590/0103-8478cr20150540.
  • Comin JJ, Loss A, Veiga M, et al. Physical properties and organic carbon content of a Typic Hapludult soil fertilised with pig slurry and pig litter in a no-tillage system. Soil Res. 2013;51(5):459–470. doi:10.1071/SR13130.
  • Couto RR, Comin JJ, Soares CRFS, et al. Microbiological and chemical attributes of a Hapludalf soil with swine manure fertilization. Pesq Agropec Bras. 2013;48(7):774–782. doi:10.1590/S0100-204X2013000700010.
  • Giacomini SJ, Aita C, Pujol SB, et al. Transformações do nitrogênio no solo após adição de dejeto líquido e cama sobreposta de suínos. Pesq Agropec Bras. 2013;48(2):211–219. doi:10.1590/S0100-204X2013000200012.
  • Brunetto G, Comin JJ, Schmitt DE, et al. Changes in soil acidity and organic carbon in a sandy Typic Hapludalf after medium-term pig-slurry and deep-litter application. Rev Bras Ciênc Solo. 2012;36(5):1620–1628. doi:10.1590/S0100-06832012000500026.
  • Mafra MSH, Cassol PC, Albuquerque JA, et al. Acúmulo de carbono em Latossolo adubado com dejeto líquido de suínos e cultivado em plantio direto. Pesq Agropec Bras. 2014;49(8):630–638. doi:10.1590/S0100-204X2014000800007.
  • Giacomini SJ, Aita C. Cama sobreposta e dejetos líquidos de suínos como fonte de nitrogênio ao milho. Rev Bras Ciênc Solo. 2008;32(1):195–205. doi:10.1590/S0100-06832008000100019.
  • Francisco CAL. Matéria orgânica e agregação do solo em áreas adubadas com dejeto líquido de suínos Dissertação (mestrado) – Universidade Federal de Santa Catarina, Centro de Ciências Agrárias, Programa de Pós-Graduação em Agroecossistemas, Florianópolis; 2019. p. 67. https://repositorio.ufsc.br/bitstream/handle/123456789/211639/PAGR0429-D.pdf?sequence=-1&isAllowed=y.
  • Aita C, Tonetto F, Gonzatto R, et al. Nitrous oxide emissions in a wheat/corn succession combining dairy slurry and urea as nitrogen sources. Rev Bras Ci Sol. 2018;42:1–14.
  • Gonzatto R, Aita C, Bélanger G, et al. Response of no-till grain crops to pig slurry application methods and a nitrification inhibitor. Agron J. 2017;109(4):1687–1610. doi:10.2134/agronj2016.09.0547.
  • Embrapa. Sistema Brasileiro de Classificação de Solos. 3rd ed. Brasília (Brazil): Embrapa Produção de informação; Rio de Janeiro: Embrapa Solos; 2013. 312 p.
  • Embrapa. Manual de métodos de análises de solo. 2nd ed. ver. E atual. Rio de Janeiro (Brazil): Ministério da Agricultura e do Abastecimento; 1997. 212 p.
  • Gonzatto R. Eficiência de uso do nitrogênio por gramíneas em função do modo de aplicação de dejetos suínos no solo e do uso de inibidor de nitrificação. Tese de Doutorado. Universidade Federal de Santa Maria. 2016. http://repositorio.ufsm.br/handle/1/3374
  • Comissão de Química e Fertilidade do Solo – RS/SC. Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. 10th ed. Porto Alegre (Brazil): Sociedade Brasileira de Ciência do Solo. Núcleo Regional Sul; 2004. 400 p.
  • Comissão de Química e Fertilidade do Solo – RS/SC. Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. 11th ed. Porto Alegre (Brazil): SBCS - Núcleo Re-gional Sul/UFRGS; 2016.
  • Yoder REA. Direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy, 1936;28(5):337–351. https://doi.org/10.2136/sssaj1936.036159950B1720010046x
  • Costa Junior C, Piccolo MC, Siqueira Neto M, et al. Carbono em agregados do solo sob vegetação nativa, pastagem e sistemas agrícolas no bioma Cerrado. Revista Brasileira de Ciência do Solo, 2012;36(4):1311–1322. https://doi.org/10.1590/S0100-06832012000400025
  • Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 1967;62(318):399–402. doi:10.1080/01621459.1967.10482916.
  • Bartlett MS. Properties of sufficiency and statistical tests. Proc R Soc Lond Ser A. 1937;160:268–282.
  • Fonte SJ, Yeboah E, Ofori P, et al. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Biol. Bioc. 2009;73:961–966.
  • Schmitz D, Loss A, Lourenzi CR, et al. Atributos físicos de Cambissolo Húmico submetido a fontes de nitrogênio em pomar de macieira. Com Sci. 2018;8(2):316–325. doi:10.14295/cs.v8i2.1757.
  • Ferreira GW, Benedet L, Trapp T, et al. Soil aggregation indexes and chemical and physical attributes of aggregates in a Typic Hapludult fertilized with swine manure and mineral fertilizer. International Journal of Recycling of Organic Waste in Agric. 2021;10:1896960.1051. doi:10.30486/IJROWA.2021.1896960.1051
  • Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 2004;1(7–31).
  • Haynes RJ, Beare MH. Influence of six crop species on aggregate stability and some labile organic matter fractions. Soil Biol Biochem. 1997;29(11-12):1647–1653. doi:10.1016/S0038-0717(97)00078-3.
  • Salton JC, Mielniczuk J, Bayer C, et al. Agregação e estabilidade de agregados do solo em sistemas agropecuários em Mato Grosso do Sul. Rev Bras Ciênc Solo. 2008;32(1):11–21. doi:10.1590/S0100-06832008000100002.
  • Oades JM. Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil. 1984;76(1-3):319–337. doi:10.1007/BF02205590.
  • Oliveira JGR, Tavares Filho J, Barbosa GMC. Alterações na física do solo com a aplicação de dejetos animais. Geogr Opportuno Tempore. 2016;2(2):66–80.
  • Ferreira LB, Loss A, Giumbelli LD, et al. Organic carbon and nitrogen contents and their fractions in soils with onion crops in different management systems. Soil Res. 2018;56(8):846–855. doi:10.1071/SR18167.
  • Tivet F, Sá JCM, Lal R, et al. Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil Tillage Res. 2013;126:203–218. doi:10.1016/j.still.2012.09.004.
  • Loss A, Couto RR, Brunetto G, et al. Animal Manure As Fertilizer: Changes In Soil Attributes, Productivity And Food Composition. International Journal of Research – Granthaalayah, 2019;7(307–331). doi: 10.5281/zenodo.347556
  • Lourenzi CR, Ciancio NHR, Tiecher TL, et al. Forms of N and P transfer by runoff in soil under no-tillage with successive organic waste and mineral fertilizers applications. Agric Water Manage. 2021;248:106779. doi:10.1016/j.agwat.2021.106779.
  • Bacca A, Ceretta CA, Ferreira PAA, et al. Residual and immediate effect after 16 applications of organic sources on yield and nitrogen use efficiency in black oat and corn. Rev Brasil Ciência Solo. 2020;44:1–15. doi:10.36783/18069657rbcs20190013.
  • Comin JJ, Ferreira LB, Santos LH, et al. Carbon and nitrogen contents and aggregation index of soil cultivated with onion for seven years using crop successions and rotations. Soil Tillage Res. 2018;184:195–202. doi:10.1016/j.still.2018.08.002.
  • Loss A, Pereira MG, Perin A, et al. Particulate organic matter in soil under different management systems in the Brazilian Cerrado. Soil Res. 2012;50(8): 685–693.doi.org/10.1071/SR12196
  • Rodrigues LAT, Giacomini SJ, Aita C, et al. Short-and long-term effects of animal manures and mineral fertilizer on carbon stocks in subtropical soil under no-tillage. Geoderma. 2021;386:e114913. doi:10.1016/j.geoderma.2020.114913.
  • Dortzbach D, Araujo IS, Pandolfo CM, et al. Carbono e nitrogênio no solo e na biomassa microbiana em glebas com diferentes usos e períodos de aplicação de dejetos líquidos de suínos. Rev Agropecuária Catarinense. 2013;26(2):69–73.
  • Pellegrin MABP, Muraro DS, Basso CJ, et al. Estratégias de manejo do dejeto líquido de suínos associado com inibidores de nitrificação na produção de massa seca do trigo. XI Reunião Sul-Brasileira de Ciência do Solo. Frederico Westphalen, RS, 2016.
  • Assis CP, Jucksch I, Mendonça ES, et al. Carbon and nitrogen in aggregates of an Oxisol submitted to different use and management systems. Pesq Agropec Bras. 2006;41(10):1541–1550. doi:10.1590/S0100-204X2006001000012.
  • Six J, Paustian K, Elliott ET, et al. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate associated carbon. Soil Sci Soc Am J. 2000;64(2):681–689. doi: 10.2136/sssaj2000.642681x.
  • Costa Júnior C, Píccolo MDC, Siqueira Neto M, et al. Carbono em agregados do solo sob vegetação nativa, pastagem e sistemas agrícolas no bioma Cerrado. Rev Bras Ciênc Solo. 2012;36(4):1311–1322. doi:10.1590/S0100-06832012000400025.
  • Loss A, Pereira MG, Giácomo SG, et al. Agregação, carbono e nitrogênio em agregados do solo sob plantio direto com integração lavoura-pecuária. Pesq Agropec Bras. 2011;46(10):1269–1276. doi:10.1590/S0100-204X2011001000022.
  • Du Z, L.; Ren T-S, Hu C-S, Zhang, et al. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the north China plain. J Integr Agric. 2013;12(11):2114–2123. doi:10.1016/S2095-3119(13)60428-1.
  • Angers DA, Chantigny MH, Macdonald JD, et al. Differential retention of carbon, nitrogen and phosphorus in grassland soil profiles with long-term manure application. Nutr Cycl Agroecosyst. 2010;86(2):225–229. doi:10.1007/s10705-009-9286-3.
  • Aguilera E, Lassaletta L, Gattinger A, et al. Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agric Ecosyst Environ. 2013;168:25–36. doi:10.1016/j.agee.2013.02.003.
  • Smith BN, Epstein S. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 1971;47(3):380–384. doi:10.1104/pp.47.3.380.
  • Guareschi RF, Pereira MG, Perin A. Deposição de resíduos vegetais, matéria orgânica leve, estoques de carbono e nitrogênio e fósforo remanescente sob diferentes sistemas de manejo no cerrado goiano. Rev Bras Ciênc Solo. 2012;36(3):909–920. doi:10.1590/S0100-06832012000300021.
  • Högberg P. 15N natural abundance in soil-plant systems. New Phytol. 1997;137(2):179–203. doi:10.1046/j.1469-8137.1997.00808.x.
  • Costa Júnior C, Piccolo MDC, De Camargo PB, et al. Nitrogênio e abundância natural de 15N em agregados do solo no bioma Cerrado. Rev Educ. 2011;15(2):47–66.
  • Chalk PM, Inácio CT, A MT. From fertilizer to food: tracing nitrogen dynamics in conventional and organic farming systems using 15N natural abundance. In: Heng LK, Sakadevan K, Dercon G, Nguyen ML. editors. Proceedings – International Symposium on Managing Soils for Food Security and Climate Change Adaptation and Mitigation. Rome, Food and Agriculture Organization of United Nations; 2014. p. 339–349.
  • Inácio CT. Uso da Abundância Natural de 15N em Estudos com Fertilizantes Orgânicos Tese de doutorado. Universidade Federal Rural do Rio de Janeiro. 2015.
  • Guareschi RF, Pereira MG, Perin A. Carbono, nitrogênio e abundância natura de δ13C e δ15N em uma cromossequência de agricultura sob plantio direto no cerrado goiano. Rev Bras Ciênc Solo. 2014;38(4):1135–1142. doi:10.1590/S0100-06832014000400009.
  • Pegoraro RF, Silva IRD, Novais RFD, et al. Abundância natural de 15N e formas de nitrogênio em Argissolo cultivado com eucalipto e acácia. Ci Fl. 2016;26(1): 295–305. doi: 10.5902/1980509821121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.