3,449
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Greenhouse gas emission and mitigation potential from livestock production in the drylands of Northern Ethiopia

ORCID Icon, , , , &

References

  • Gerber PJ, Steinfeld H, Henderson B, et al. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Rome (Italy): Food and Agriculture Organization of the United Nations (FAO); 2013.
  • IPCC. IPCC Guidelines for national greenhouse gas inventories: agriculture, forestry and other land use. Japan: Intergovernmental Panel for Climate Change (IPCC);2004.
  • FDRE. Ethiopia’s climate-resilient green economy strategy. Addis Ababa: Government of the Federal Democratic Republic of Ethiopia; 2011. p. 1–130.
  • Steinfeld H, Gerber P. Livestock production and the global environment: Consume less or produce better? Proc Natl Acad Sci USA. 2010;107(43):18237–18238. doi:10.1073/pnas.1012541107.
  • IPCC. Climate Change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland,: Intergovernmental Panel on Climate Change (IPCC); 2007.
  • Steinfeld H, Gerber P, Wassenaar T, et al. Livestock's long shadow: environmental issues and options. Rome: Food and Agriculture Organization of the United Nations (FAO); 2006.
  • Pelletier N, Pirog R, Rasmussen R. Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agric Syst. 2010;103(6):380–389. doi:10.1016/j.agsy.2010.03.009.
  • Shapiro BI, Gebru G, Desta S, et al. Ethiopia livestock master plan: Roadmaps for growth and transformation (A contribution to the Growth and Transformation Plan II (2015-2020) ILRI Project Report. Nairobi, Kenya: International Livestock Research Institute (ILRI); 2015.
  • Benavides RAM, Guerrero HS, Mateus D. Livestock greenhouse gases emissions under grazing conditions in the tropic. Revinvestigagrarambient. 2018;10(1):91–106. doi:10.22490/21456453.2685.
  • Anne M, Carolyn O, Alessandra F, et al. The global livestock environmental assessment model (GLEAM), Version 2.0 Rome. Italy: Food and Agriculture Organization of the United Nations (FAO);2018. [cited 2019 February 5]. Available from: http://www.fao.org/gleam/en/
  • Amanuel B, Solomon AB, Mulubrhan B. Estimation of greenhouse gas emissions from three livestock production systems in Ethiopia. Int J Clim Change Strategies Manage. 2020; 12(5): 669–685
  • Amlan KP. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front Vet Sci. 2016;3(39):1–17.
  • Habtamu TM, Yeshi T, Gebrehiwot TM, et al. In vitro estimation of gas and methane production from locally available feed stuffs and rumen content. Ethiop J Veterin Sci Animal Prod. 2020;4(1):1–9.
  • Pashaei S, Razmazar V, Mirshekar R. Gas Production: A proposed in vitro method to estimate the extent of digestion of a feedstuff in the rumen. J of Biological Sciences. 2010;10(6):573–580. doi:10.3923/jbs.2010.573.580.
  • Sejian V, Bhatta R, Malik PK, et al. Livestock as sources of greenhouse gases and its significance to climate change. Greenhouse Gases ExLi4EvA. 2016;:243–259. doi:10.5772/62135
  • Grainger C, Clarke T, McGinn S, et al. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J Dairy Sci. 2007;90(6):2755–2766. doi:10.3168/jds.2006-697.
  • Gardiner TD, Coleman MD, Innocenti F, et al. Determination of the absolute accuracy of UK Chamber facilities used in measuring methane emissions from livestock. Measurement. 2015;66:272–230. /doi:10.1016/j.measurement.2015.02.029.
  • Pinares-Patiño C, Lassey K, Martin R, et al. Assessment of the sulphur hexafluoride (SF6) tracer technique using respiration chambers for estimation of methane emissions from sheep. Anim Feed Sci Technol. 2011;166/167:201–209. doi:10.1016/j.anifeedsci.2011.04.067.
  • Johnson K, Huyler M, Westberg H, et al. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ Sci Technol. 1994;28(2):359–362. doi:10.1021/es00051a025.
  • Lassey K, Walker C, McMillan A, et al. On the performance of SF6 permeation tubes used in determining methane emission from grazing livestock. Chemosphere–Global Change Sci. 2001;3(4):367–376. doi:10.1016/S1465-9972(01)00017-4.
  • Dioha MO, Kumar A. Exploring greenhouse gas mitigation strategies for agriculture in Africa: the case of Nigeria. Ambio. 2020;49(9):1549–1566. doi:10.1007/s13280-019-01293-9.
  • de Oliveira Silva R, Barioni LG, Albertini TZ, et al. Developing a nationally appropriate mitigation measure from the greenhouse gas GHG abatement potential from livestock production in the Brazilian Cerrado. Agric Syst. 2015;140:48–55. doi:10.1016/j.agsy.2015.08.011.
  • Dutreuil M, Wattiaux M, Hardie C, et al. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin. J Dairy Sci. 2014;97(9):5904–5917. doi:10.3168/jds.2014-8082.
  • Havlík P, Valin H, Herrero M, et al. Climate change mitigation through livestock system transitions. Proc Natl Acad Sci USA. 2014;111(10):3709–3714. doi:10.1073/pnas.1308044111.
  • Herrero M, Henderson B, Havlík P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nature Clim Change. 2016;6(5):452–461. doi:10.1038/nclimate2925.
  • Hristov A, Oh J, Firkins J, et al. Special topics-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 2013;91(11):5045–5069. doi:10.2527/jas.2013-6583.
  • Hristov AN, Oh J, Lee C, et al. Mitigation of greenhouse gas emissions in livestock production: A review of technical options for non-CO2 emissions. In: Gerber PJ, Henderson B, Makkar HPS. Animal Production and Health Paper No 177. Rome: FAO; 2013.
  • Hyland J, Styles D, Jones D, et al. Improving livestock production efficiencies presents a major opportunity to reduce sectoral greenhouse gas emissions. Agric Syst. 2016;147:123–131. doi:10.1016/j.agsy.2016.06.006.
  • Llonch P, Haskell M, Dewhurst R, et al. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Animal. 2017;11(2):274–284. doi:10.1017/S1751731116001440.
  • Vu QD, de Neergaard A, Tran TD, et al. Manure, biogas digestate and crop residue management affects methane gas emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutr Cycl Agroecosyst. 2015;103(3):329–346. doi:10.1007/s10705-015-9746-x.
  • Gebrehiwot MT, Punia BS, Dey A, et al. Effects of Albizia lebbeck leaves and its extracts on methanogenesis and fermentation of feeds in buffaloes (Bubalus bulballis). Indian J Anim Nutr. 2014;31(4):362–366.
  • Hristov AN, Callaway TR, Lee C, et al. Rumen bacterial, archaeal, and fungal diversity of dairy cows in response to ingestion of lauric or myristic acid. J Anim Sci. 2012;90:4449–4457.
  • Hristov AN, Ivan M, Rode LM, et al. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium – or high concentrate barley-based diets. J Anim Sci. 2001;79(2):515–524. doi:10.2527/2001.792515x.
  • MacLeod M, Gerber P, Vellinga T, et al., editors. GLEAM: an example of the potential contribution of livestock modelling to sustainable intensification. Carbon Management Centre International Conference: Sustainable intensification: The pathway to low carbon farming; Edinburgh, Scotland; 2013.
  • Ayalew H, Chanie D, Lamesegn D. Review on productive and reproductive performance of indigenous dairy cattle breeds under farmer’s management practices in Ethiopia. Online J Anim Feed Res. 2018;8(6):169–174.
  • Aynalem H, Workneh A, Noah K, et al. Breeding strategy to improve Ethiopian Boran cattle for meat and milk production. IPMS (Improving Productivity and Market Success) of Ethiopian Farmers Project Working Paper 26 Nairobi, Kenya: International Livestock Research Institute (ILRI); 2011.
  • DADIS. Domestic Animal Diversity Information System (DADIS). Number of breeds by species and country: Food and Agriculture Organization of the United Nations; [cited 2020 January 12]. Available from: http://www.fao.org/dad-is/data/en/.
  • DAGRIS. Domestic Animal Genetic Resources Information System (DAGRIS) Addis Ababa. Ethiopia: International Livestock Research Institute; 2007. [cited 2020 January 12]. Available from: http://www.dagris.info/countries/192/breeds?name=&name_1=&title=&order=name&sort=desc.
  • Dereje T, Mengistu U, Getachew A, et al. A review of productive and reproductive characteristics of indigenous goats in Ethiopia. Livestock Res Rural Develop. 2015;27(2):2015.
  • Gizaw S, Komen H, Hanotte O, et al. Indigenous sheep resources of Ethiopia: types, production systems and farmers preferences. Anim Genet Resour Inf. 2008;43:25–39. doi:10.1017/S1014233900002704.
  • Melkamu T, Kumar N, Gebrekidan B, et al. Performance of Bovans Brown chickens under intensive and backyard management system in Mekelle, Ethiopia. Ethiop J Vet Sci Anim Prod. 2017;1(1):73–80.
  • Mengistu R. Performances of highland sheep under community-based breeding program in Atsbi Wenberta District, Tigray, Ethiopia. Bahir Dar, Ethiopia: Bahir Dar University; 2018.
  • Moges TT. Phenotypic characterization of indigenous sheep and farmers' breeding objectives in three selected districts of South Wollo Zone, Ethiopia. Bahir dar, Ethiopia: Bahir Dar University; 2016.
  • Tadesse D, Singh H, Mengistu A, et al. Study on productive performances and egg quality traits of exotic chickens under village production system in East Shewa, Ethiopia. Afr J Agric Res. 2013;8(13):1123–1128.
  • Tadesse G, Tegegne A. Reproductive performance and wastage in large ruminant (cattle) in Ethiopia–review. Dairy Vet Sci J. 2018;8(1):001–009.
  • Teweldemedhn M. Characterization of productive and reproductive performances, morphometric and challenges and opportunities of indigenous cattle breeds of Ethiopia: A review. Int J Livest Prod. 2018;9(3):29–41. doi:10.5897/IJLP2017.0426.
  • Zelalem A. Assessing fertility, hatchability and chick quality in Andasa Poultry Multiplication Center. Mekelle, Ethiopia: Mekelle University; 2014.
  • Eyob T. Morphological characterization of indigenous chicken and their production system in Silte, Dalocha and Wulbareg Woredas of Silt'e Zone, South Region, Ethiopia. Bishoftu, Ethiopia: Addis Ababa University; 2019.
  • Getiso A, Bekele B, Zeleke B, et al. Production performance of Sasso (distributed by ethio-chicken private poultry farms) and Bovans brown chickens breed under village production system in three agro-ecologies of Southern Nations, Nationalities, and Peoples' Regional State (SNNPR), Ethiopia. Int J Livestock Prod. 2017;8(9):45–157.
  • Abegaz GA, Hassen IW, Minten B. Consumption of animal-source foods in Ethiopia: Patterns, changes, and determinants. Vol. 113. Intl. Food Policy Res. Inst.; 2018.
  • Beauchemin KA, McAllister TA, McGinn SM. Dietary mitigation of enteric methane from cattle. CAB Rev. 2009;4(035):1–18. doi:10.1079/PAVSNNR20094035.
  • Grossi G, Goglio P, Vitali A, et al. Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim Front. 2019;9(1):69–76. doi:10.1093/af/vfy034.
  • Denef K, Archibeque s, Paustian K. Greenhouse gas emissions from U.S. agriculture and forestry: A review of emission sources, controlling factors, and mitigation potential Interim report to USDA under Contract #GS23F8182H. 2011.
  • IPCC. climate change 2014: synthesis report. Contribution of working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. Geneva, Switzerland: Intergovernmental Panel on Climate Change; 2014.
  • Herrero M, Havlík P, Valin H, et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc Natl Acad Sci U S A. 2013;110(52):20888–20893. doi:10.1073/pnas.1308149110.
  • Prasad CS, Malik PK, et al. Bhatta R, Overview. In: Malik PK, Bhatta R, Takahashi J. editors. Livestock production and climate change. Vol. 6, Climate change series. Oxfordshire, UK: CABI; 2015. p. 1–7.
  • CSA. Agricultural Sample Survey 2017/18 (2010 E.C.): Report on Livestock and Livestock Characteristics (Private Peasant Holdings), Statistical Bulletin 587 Addis Ababa, Ethiopia: Central Statistical Agency (CSA); 2018. [cited 2020 March 20]. Available from: http://www.csa.gov.et/survey-report/category/358-eth-agss-2017?download=938. :livestock-report-2010-ec-2017
  • Soussana J-F, editor The role of the carbon cycle for the greenhouse gas balance of grasslands and of livestock production systems. Livestock and Global Climate Change; 2008. Hammamet, Tunisia: Cambridge University Press.
  • Nugrahaeningtyas E, Baek C-Y, Jeon J-H, et al. Greenhouse Gas Emission Intensities for the Livestock Sector in Indonesia, Based on the National Specific Data. Sustainability. 2018;10(6):1912. doi:10.3390/su10061912.
  • Opio C, Gerber P, Mottet A, et al. Greenhouse gas emissions from ruminant supply chains–A global life cycle assessment. Food and agriculture organization of the United Nations; 2013.
  • Herrero M, Gerber P, Vellinga T, et al. Livestock and greenhouse gas emissions: The importance of getting the numbers right. Anim Feed Sci Technol. 2011;166-167:779–782. doi:10.1016/j.anifeedsci.2011.04.083.
  • Zhu B, Kros J, Lesschen JP, et al. Assessment of uncertainties in greenhouse gas emission profiles of livestock sectors in Africa, Latin America and Europe. Reg Environ Change. 2016;16(6):1571–1582. doi:10.1007/s10113-015-0896-9.
  • MacLeod M, Gerber P, Mottet A, et al. Greenhouse gas emissions from pig and chicken supply chains–A global life cycle assessment. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO); 2013.
  • Thornton PK. Livestock production: recent trends, future prospects. Philos Trans R Soc Lond B Biol Sci. 2010;365(1554):2853–2867. doi:10.1098/rstb.2010.0134.
  • Henry B, Charmley E, Eckard R, et al. Livestock production in a changing climate: adaptation and mitigation research in Australia. Crop Pasture Sci. 2012;63(3):191–202. doi:10.1071/CP11169.
  • Howden S, Reyenga P. Methane emissions from Australian livestock: implications of the Kyoto Protocol. Aust J Agric Res. 1999;50(8):1285–1292. doi:10.1071/AR99002.
  • Audsley E, Wilkinson M. What is the potential for reducing national greenhouse gas emissions from crop and livestock production systems? J Cleaner Prod. 2014;73:263–268. doi:10.1016/j.jclepro.2014.01.066.
  • Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73(8):2483–2492. doi:10.2527/1995.7382483x.
  • Van Kessel JAS, Russell JB. The effect of pH on ruminal methanogenesis. FEMS Microbiol Ecol. 1996;20(4):205–210. doi:10.1111/j.1574-6941.1996.tb00319.x.
  • Petersen SO, Blanchard M, Chadwick D, et al. Manure management for greenhouse gas mitigation. Animal. 2013;7(s2):266–282. doi:10.1017/S1751731113000736.
  • Shemdoe R, Kassenga G, Mbuligwe S. Implementing climate change adaptation and mitigation interventions at the local government levels in Tanzania: where do we start? Curr Opin Environ Sustain. 2015;13:32–41. doi:10.1016/j.cosust.2015.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.