5,069
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Aboveground and belowground tree biomass and carbon stocks in the miombo woodlands of the Copperbelt in Zambia

, , &

References

  • Pan Y, Birdsey RA, Fang J, et al. A large and persistent carbon sink in the world's forests. Science. 2011;333(6045):988–993. doi:10.1126/science.1201609.
  • Robinson D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc Biol Sci. 2007;274(1626):2753–2759. doi:10.1098/rspb.2007.1012.
  • Temesgen H, Affleck D, Poudel K, et al. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand J For Res. 2015;30:326–335.
  • Huy B, Tinh NT, Poudel KP, et al. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For Ecol Manage. 2019;437:156–174. doi:10.1016/j.foreco.2019.01.038.
  • Henry M, Picard N, Trotta C, et al. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn. 2011;45(3B):477–569. doi:10.14214/sf.38.
  • de-Miguel S, Pukkala T, Assaf N, et al. Intra-specific differences in allometric equations for aboveground biomass of eastern Mediterranean Pinus brutia. Ann for Sci. 2014;71(1):101–112. doi:10.1007/s13595-013-0334-4.
  • Poorter H, Niklas KJ, Reich PB, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 2012;193(1):30–50. doi:10.1111/j.1469-8137.2011.03952.x.
  • Gumbo D, Clendenning J, Martius C, et al. How have carbon stocks in central and southern Africa’s miombo woodlands changed over the last 50 years? A systematic map of the evidence. Environ Evid. 2018;7(1):16. doi:10.1186/s13750-018-0128-0.
  • Lupala ZJ, Lusambo LP, Ngaga YM. Management, growth, and carbon storage in miombo woodlands of Tanzania. Int J for Res. 2014;2014:1–11. doi:10.1155/2014/629317.
  • Ribeiro NS, Matos CN, Moura IR, et al. Monitoring vegetation dynamics and carbon stock density in miombo woodlands. Carbon Balance Manage. 2012; 8:11.
  • Kachamba D, Eid T, Gobakken T. Above- and belowground biomass models for trees in the miombo woodlands of Malawi. Forests. 2016;7(2):38. doi:10.3390/f7020038.
  • Munishi PKT, Mringi S, Shirima DD. The role of the miombo woodlands of southern highlands of Tanzania as carbon sinks. J Ecol Nat Environ. 2010; 2:261–269.
  • Mugasha WA, Eid T, Bollandsas OM, et al. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For Ecol Manage. 2013; 310:87–101. doi:10.1016/j.foreco.2013.08.003.
  • Kapinga K, Syampungani S, Kasubika R, et al. Species-specific allometric models for estimation of the aboveground carbon stock in miombo woodlands of Copperbelt Province of Zambia. For Ecol Manage. 2018; 417:184–196. doi:10.1016/j.foreco.2018.02.044.
  • Kuyah S, Sileshi GW, Rosenstock TS. Allometric models based on Bayesian frameworks give better estimates of aboveground biomass in the Miombo Woodlands. Forests. 2016;7(2):13. doi:10.3390/f7020013.
  • Chirwa PW, Syampungani S, Geldenhuys CJ. The ecology and management of the miombo woodlands for sustainable livelihoods in southern Africa: the case for non-timber forest products. South For. 2008;70(3):237–245. doi:10.2989/SF.2008.70.3.7.668.
  • Mittermeier RA, Mittermeier CG, Brooks TM, et al. Wilderness and biodiversity conservation. Proc Natl Acad Sci USA. 2003;100(18):10309–10313. doi:10.1073/pnas.1732458100.
  • Handavu F, Chirwa PWC, Syampungani S, et al. A review of carbon dynamics and assessment methods in the miombo woodland. South For. 2017;79(2):95–102. doi:10.2989/20702620.2016.1277643.
  • Ngoma J, Moors E, Kruijt B, et al. Below and aboveground carbon distribution along rainfall gradient: a case of the Zambezi teak forests, Zambia. Acta Oecol. 2018; 87:45–57. doi:10.1016/j.actao.2018.02.003.
  • Kalaba FK, Quinn CH, Dougill AJ, et al. Floristic composition, species diversity and carbon storage in charcoal and agriculture fallows and management implications in miombo woodlands of Zambia. For Ecol Manage. 2013;304:99–109. doi:10.1016/j.foreco.2013.04.024.
  • Handavu F, Chirwa PWC, Syampungani S. Socio-economic factors influencing land-use and land-cover changes in the miombo woodlands of the Copperbelt province in Zambia. For Policy and Econ. 2019;100:75–94. doi:10.1016/j.forpol.2018.10.010.
  • Syampungani S. Vegetation change analysis and ecological recovery of the Copperbelt miombo woodlands of Zambia [PhD thesis]. Stellenbosch (South Africa): Stellenbosch University; 2008.
  • Hill MO, Šmilauer P. TWINSPAN for Windows version 2.3. Centre for Ecology & Hydrology and University of South Bohemia, Huntingdon & České Budějovice; 2005. Accessed from: https://www.ceh.ac.uk/services/wintwins-version-23
  • Murillo-Pacheco JI, Rös M, Escobar F, et al. Effect of wetland management: are lentic wetlands refuges of plant-species diversity in the Andean-Orinoco Piedmont of Colombia? PeerJ. 2016;4:e2267. doi:10.7717/peerj.2267.
  • Sileshi GW. A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manage. 2014; 329:237–254. doi:10.1016/j.foreco.2014.06.026.
  • Basuki TM, van Laake PE, Skidmore AK, et al. Allometric equations for estimating the aboveground biomass in tropical lowland Dipterocarp forests. For. Ecol. Manage. 2009;257(8):1684–1694. doi:10.1016/j.foreco.2009.01.027.
  • Picard N, Saint-André L, Henry M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier; 2012. 215 pp.
  • Chidumayo EN. Forest degradation and recovery in a miombo woodland landscape in Zambia: 22 years of observations on permanent sample plots. For Ecol Manage. 2013;291:154–161. doi:10.1016/j.foreco.2012.11.031.
  • Ullah MR, Al-Amin M. Above- and belowground carbon stock estimation in a natural forest of Bangladesh. J For Sci. 2012;58(No. 8):372–379. doi:10.17221/103/2011-JFS.
  • Chave J, Réjou-Méchain M, Búrquez A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol. 2014;20(10):3177–3190. doi:10.1111/gcb.12629.
  • Henry M, Besnard A, Asante WA, et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecol Manage. 2010;260(8):1375–1388. doi:10.1016/j.foreco.2010.07.040.
  • Cheng D, Niklas K. Above- and below-ground biomass relationships across 1534 forested communities. Ann Bot. 2007;99(1):95–102. doi:10.1093/aob/mcl206.
  • Hui D, Wang J, Shen W, et al. Near isometric biomass partitioning in forest ecosystems of China. PLoS One. 2014;9(1):e86550. doi:10.1371/journal.pone.0086550.
  • Chidumayo EN. Estimating tree biomass and changes in root biomass following clear-cutting of Brachystegia-Julbernardia (miombo) woodland in central Zambia. Envir Conserv. 2014;41(1):54–63. doi:10.1017/S0376892913000210.
  • Walther BA, Moore JL. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography. 2005;28(6):815–829. doi:10.1111/j.2005.0906-7590.04112.x.
  • Baskerville GL. Use of logarithmic regression in the estimation of plant biomass. Can J For Res. 1972;2(1):49–53. doi:10.1139/x72-009.
  • Ioannidis JPA. Why most discovered true associations are inflated. Epidemiology. 2008;19(5):640–648. doi:10.1097/EDE.0b013e31818131e7.
  • Zöllner S, Pritchard J. Overcoming the winner’s curse: estimating penetrance parameters from case-control data. Am J Hum Genet. 2007;80(4):605–615. doi:10.1086/512821.
  • Kuyah S, Sileshi GW, Njoloma J, et al. Estimating aboveground tree biomass in three different miombo woodlands and associated land use systems in Malawi. Biomass Bioenerg. 2014;66:214–222. doi:10.1016/j.biombioe.2014.02.005.
  • Mensah S, Veldtman R, Du Toit B, et al. Aboveground biomass and carbon in a South African Mistbelt Forest and the relationships with tree species diversity and forest structures. Forests. 2016;7(12):79. doi:10.3390/f7040079.
  • Cannell MGR. Growing trees to sequester carbon in the UK: answers to some common questions. Forestry. 1999;72(3):237–247. doi:10.1093/forestry/72.3.237.
  • Flowers-Cano RS, Ortiz-Gómez R, León-Jiménez JE, et al. Comparison of bootstrap confidence intervals using Monte Carlo simulations. Water. 2018;10(2):166. doi:10.3390/w10020166.
  • Davison AC, Hinkley DV. Bootstrap methods and their application. New York (NY): Cambridge University Press; 1997.
  • Vonderach C, Kändler G, Dormann CF. Consistent set of additive biomass functions for eight tree species in Germany fit by nonlinear seemingly unrelated regression. Ann For Sci. 2018;75(2):49. doi:10.1007/s13595-018-0728-4.
  • Sanquetta CR, Behling A, Corte APD, et al. Simultaneous estimation as alternative to independent modelling of tree biomass. Ann For Sci. 2015;72(8):1099–1112. doi:10.1007/s13595-015-0497-2.
  • Kalaba FK, Quinn CH, Dougill AJ. Contribution of forest provisioning ecosystem services to rural livelihoods in Copperbelt's Miombo Woodlands, Zambia. Sustainability Research Institute Working Paper no. 14, 2012, pp. 1–39.
  • Thomas SC, Martin AR. Carbon content of tree tissues: a synthesis. Forests. 2012;3(2):332–352. doi:10.3390/f3020332.
  • Eggleston HS, Buendia L, Miwa K, et al. IPCC guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme, vol. 4. IGES, Japan, 2006.
  • Ma S, Feng He F, Tian D, et al. Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences. 2018;15(3):693–702. doi:10.5194/bg-15-693-2018.
  • Thomas SC, Malczewski G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. J Environ Manage. 2007;85(3):659–662. doi:10.1016/j.jenvman.2006.04.022.
  • Martin AR, Thomas SC. A reassessment of carbon content in tropical trees. PLoS One. 2011;6(8):e23533. doi:10.1371/journal.pone.0023533.
  • Malimbwi RE, Solberg B, Luoga E. Estimation of biomass and volume in miombo woodland at Kitulangalo Forest Reserve, Tanzania. J Trop For Sci. 1994;7:230–242.
  • Ifo AS, Gomat HY, Mampouya Wenina YE, et al. Carbon stocks and tree allometries in the savannahs of the Plateau Batéké, central Africa. For Ecol Manage. 2018;427:86–95. doi:10.1016/j.foreco.2018.05.065.
  • Ryan CM, Williams M. How does fire intensity and frequency affect miombo woodland tree populations and biomass? Ecol Appl. 2011;21(1):48–60. doi:10.1890/09-1489.1.
  • Sprugel DG. Correcting for bias in log-transformed allometric equations. Ecology. 1983;64(1):209–210. doi:10.2307/1937343.
  • Frost P. The ecology of miombo woodlands. In: Campbell B, editor. The Miombo in transition: woodlands and welfare in Africa. Bogor (Indonesia): CIFOR; 1996. p. 11–55.
  • Backéus I, Pettersson B, Strömquist L, et al. Tree communities and structural dynamics in miombo (Brachystegia-Julbernadia) woodlands, Tanzania. For Ecol. Manage. 2006;230(1-3):171–178. doi:10.1016/j.foreco.2006.04.033.
  • Banda T, Mwangulango N, Meyer B, et al. The woodland vegetation of the Katavi-Rukwa ecosystem in Western Tanzaina. For Ecol Manage. 2008;255(8-9):3382–3395. doi:10.1016/j.foreco.2008.01.079.
  • Torres AB, Lovett JC. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere’s Reserve, Mexico. Forestry. 2013;86(2):267–281. doi:10.1093/forestry/cps084.
  • Ribeiro NS, Matos CN, Moura IR, et al. Monitoring vegetation dynamics and carbon stock density in miombo woodlands. Carbon Balance Manag. 2013;8(1):11. doi:10.1186/1750-0680-8-11.
  • Missango E, Kamanga-Thole G. Estimation of biomass and carbon stock for miombo woodlands in Dzalanyama Forest Reserve, Malawi. Res J Agric For Sci. 2015;3(3):7–12.
  • Campbell A, Miles I, Lysenko I, et al. Carbon storage in protected areas. Technical report. UNEP-WCMC, Cambridge (UK); 2008.
  • Lewis SL, Lopez-Gonzalez G, Sonke B, et al. Increasing carbon storage in intact African tropical forests. Nature. 2009;457(7232):1003–U1003. doi:10.1038/nature07771.
  • IPCC. In: Penman J, Gytarsky M, Hiraishi T, et al., editors. 2003 IPCC Good practice guidance for land use, land-use change and forestry. International Panel on Climate Change. Published by the Institute for Global Environmental Strategies (IGES) for the IPCC, 2003. https://www.ipcc.ch/site/assets/uploads/2018/03/GPG_LULUCF_FULLEN.pdf
  • Government of the Republic of Zambia (GRZ). Zambia national strategy to reduce emissions from deforestation and forest degradation (REDD+), 2015. Available from: https://chm.cbd.int/api/v2013/documents/BE8E2856-B06B-0CAA-7C33-8B9E238BE9EC/attachments/NATIONAL%20STRATEGY%20TO%20REDUCE%20DEFORESTATION%20AND%20FOREST%20DEGRADATION%20book%20(1)%20(1).pdf
  • Government of the Republic of Zambia (GRZ). Intended Nationally Determined Contributions (INDCs), Communication to the United Nations Framework Convention on Climate Change (UNFCCC), 2015. Available from: https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Zambia%20First/FINAL+ZAMBIA%27S+INDC_1.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.