3,356
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Climate mitigation through soil amendments: quantification, evidence, and uncertainty

, , , , &
Article: 2217785 | Received 14 Jan 2022, Accepted 19 May 2023, Published online: 03 Jul 2023

References

  • Sanderman J, Hengl T, Fiske GJ. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad Sci USA. 2017;114(36):9575–9580. doi: 10.1073/pnas.1706103114.
  • Amelung W, Bossio D, de Vries W, et al. Towards a global-scale soil climate mitigation strategy. Nat Commun. 2020;11:5427.
  • Oldfield E, Eagle A, Rubin RL, et al. Crediting agricultural soil carbon sequestration. Science. 2022;375(6586):1222–1225. doi: 10.1126/science.abl7991.
  • Abbott LK, Macdonald LM, Wong MTF, et al. Potential roles of biological amendments for profitable grain production – a review. Agric Ecosys Environ. 2018;256:34–50. doi: 10.1016/j.agee.2017.12.021.
  • Amundson R, Biardeau L. Opinion: soil carbon sequestration is an elusive climate mitigation tool. Proc Natl Acad Sci U S A. 2018;115(46):11652–11656. doi: 10.1073/pnas.1815901115.
  • Dynarski KA, Bossio DA, Scow KM. Dynamic stability of soil carbon: reassessing the “permanence” of soil carbon sequestration. Front Environ Sci. 2020;8:514701. doi: 10.3389/fenvs.2020.514701.
  • Watkins J, Durning B. Carbon definitions and typologies in environmental impact assessment: greenhouse gas confusion? Impact Ass Proj App. 2012;30:4.
  • Hsu A, Hohne N, Kuramochi T, et al. A research roadmap for quantifying non-state and subnational climate mitigation action. Nat Clim Change. 2019;9(1):11–17. doi: 10.1038/s41558-018-0338-z.
  • de Bruin WB, Rabinovich L, Weber K, et al. Public understanding of climate change terminology. Climate Change. 2021;167:37.
  • Moomaw W. 2017. To curb climate change, we need to protect and expand US forests (https://theconversation.com/to-curb-climate-change-we-need-to-protect-and-expand-us-forests-76380).
  • US EPA. EPA’s treatment of biogenic carbon dioxide (CO2) emissions from stationary sources that use Forest biomass for energy production. (Washington, DC: the United States Environmental Protection Agency); 2018.
  • Sintim HY, Flury M. Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environ Sci Technol. 2017;51(3):1068–1069. doi: 10.1021/acs.est.6b06042.
  • Goll DS, Ciais P, Amann T, et al. Potential CO2 removal from enhanced weathering by ecosystem responses to powdered rock. Nat Geosci. 2021;14(8):545–549. doi: 10.1038/s41561-021-00798-x.
  • Ye L, Camps-Abserstain M, Shen Q, et al. Biochar effects on crop yields with and without fertilizer: a meta-analysis of field studies using separate controls. Soil Use Manage. 2020;36(1):2–18. doi: 10.1111/sum.12546.
  • Forster PT, Storelvmo K, Armour W, et al. The earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 923–1054; 2021. doi: 10.1017/9781009157896.009.
  • EPA.gov. Greenhouse gas equivalancies calculator. April 2022. https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator.
  • Keiluweit M, Bougoure JJ, Nico PS, et al. Mineral protection of soil carbon counteracted by root exudates. Nat Clim Change. 2015;5(6):588–595. doi: 10.1038/nclimate2580.
  • Finley BK, Dijkstra P, Rasmussen C, et al. Soil mineral assemblage and substrate quality effects on microbial priming. Geoderma. 2018;322:38–47. doi: 10.1016/j.geoderma.2018.01.039.
  • Bailey VL, Hicks Pries C, Lajtha K. What do we know about soil carbon destabilization? Environ Res Lett. 2019;14(8):083004. doi: 10.1088/1748-9326/ab2c11.
  • Dijkstra FA, Carrillo Y, Pendall E, et al. Rhizosphere priming: a nutrient perspective. Front Microbiol. 2013;4:1–8. doi: 10.3389/fmicb.2013.00216.
  • EPA. Accounting framework for biogenic CO2 emissions from stationary sources. Office of atmospheric programs. 2011. (https://yosemite.epa.gov/sab/sabproduct.nsf/0/2F9B572C712AC52E8525783100704886/$File/Biogenic_CO2_Accounting_Framework_Report_LATEST.pdf).
  • Novick K, Metzger S, Anderegg WRL, et al. Informing nature-based climate solutions for the United States with the best-available science. Glob Chang Biol. 2022;28(12):3778–3794. doi: 10.1111/gcb.16156.
  • Kuzyakov Y, Domanski G. Carbon input by plants into the soil. Rev. J Plant Nutr Soil Sci. 2000;163(4):421–431. doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-R.
  • Jackson O, Quilliam RS, Stott A, et al. Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates. Plant Soil. 2019;440(1-2):473–490. doi: 10.1007/s11104-019-04072-3.
  • West TO, Marland G, King AQ, et al. Carbon management response curves: estimates of temporal soil carbon dynamics. Environ Manage. 2004;33(4):507–518. doi: 10.1007/s00267-003-9108-3.
  • Jenkinson DS, Johnston AE. 1977 Soil organic matter in the hoosfield continuous barley experiment. Rothamsted Experimental Station Report for. 1976;Part 2:87–101.
  • Gifford RM, Roderick ML. Soil carbon stocks and bulk density: spatial or cumulative mass coordinates as a basis of expression? Glob Change Biol. 2003;9(11):1507–1514. doi: 10.1046/j.1365-2486.2003.00677.x.
  • von Haden AC, Yang WH, DeLucia EH. Soil’s dirty little secret: depth based comparisons can be inadequate for quantifying changes in soil organic carbon and other mineral soil properties. Glob Chang Biol. 2020;26(7):3759–3770. doi: 10.1111/gcb.15124.
  • Sanderman J, Baldock JA. Accounting for soil carbon sequestration in national inventories: a soil scientist’s perspective. Environ Res Lett. 2010;5(3):034003. doi: 10.1088/1748-9326/5/3/034003.
  • van Groenigen JW, van Kessel C, Hungate BA, et al. Sequestering soil organic carbon: a nitrogen dilemma. Environ Sci Technol. 2017;51(9):4738–4739. doi: 10.1021/acs.est.7b01427.
  • California Air Resources Board. 2019. CA-GREET3.0 model and tier 1 simplified carbon intensity calculators. https://ww2.arb.ca.gov/resources/documents/lcfs-life-cycle-analysis-models-and-documentation. Accessed Jan 20, 2022
  • RCRA. 1976. Criteria for the definition of solid waste and solid and hazardous waste exclusions. https://www.epa.gov/hw/criteria-definition-solid-waste-and-solid-and-hazardous-waste-exclusions. Accessed 7/22/2022.
  • Li Y, Li Z, Chang SX, et al. Residue retention promotes soil carbon accumulation in minimum tillage systems: implications for conservation agriculture. Sci Total Environ. 2020;740:140147. doi: 10.1016/j.scitotenv.2020.140147.
  • Titus BD, Brown K, Helmisaari HS, et al. Sustainable Forest biomass: a review of currency residue harvesting guidelines. Energ Sustain Soc. 2021;11(1):10. doi: 10.1186/s13705-021-00281-w.
  • Woolf D, Lehmann J, Ogle S, et al. Greenhouse gas inventory model for biochar additions to soil. Environ Sci Technol. 2021;55(21):14795–14805. doi: 10.1021/acs.est.1c02425.
  • Adesemoye AO, Torbert HA, Kloepper JW. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol. 2009;58(4):921–929. doi: 10.1007/s00248-009-9531-y.
  • Mondini C, Cayuela MC, Sinicco T. Soil C potential of exogenous organic matter at regional level under climate change simulated by RothC model modified for amended soils. Front Environ Sci. 2018;29:1–17.
  • Levavasseur F, Mary B, Christensen B, et al. The simple AMG model accurately simulates organic carbon storage in soils after repeated application of exogenous soil organic matter. Nutr Cycl Agroecosyst. 2020;117(2):1–15.
  • Liu E, Yan C, Mei X, et al. Long-term effect of manure and fertilizer on soil organic carbon pools in dryland farming in northwest China. PLoS One. 2013;8(2):e56536. doi: 10.1371/journal.pone.0056536.
  • Jeong ST, Rae Cho S, Lee JG, et al. Composting and compost application: trade-off between greenhouse gas emission and soil carbon sequestration in whole rice cropping system. J Clean Prod. 2019;212:1132–1142. doi: 10.1016/j.jclepro.2018.12.011.
  • Zhou M, Zhu B, Wang S, et al. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis. Glob Change Biol. 2017;23(10):4068–4083. doi: 10.1111/gcb.13648.
  • Tiefenbacher A, Sandén T, Haslmayr H-P, et al. Optimizing carbon sequestration in croplands: a synthesis. Agronomy. 2021;11(5):882. doi: 10.3390/agronomy11050882.
  • DeLonge MS, Ryals R, Silver WL. A lifecycle model to evaluate carbon sequestration potential and greenhouse gas dynamics of managed grasslands. Ecosystems. 2013;16(6):962–979. doi: 10.1007/s10021-013-9660-5.
  • Qiao C, Liu L, Hu S, et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob Change Biol. 2015;21(3):1249–1257. doi: 10.1111/gcb.12802.
  • Deng S, Wipf HML, Pierroz G, et al. Microbial soil amendment dynamically alters the strawberry root bacterial microbiome. Sci Rep. 2019;9(1):17677. doi: 10.1038/s41598-019-53623-2.
  • Corrochano-Monsalve M, Gonzalez-Murua C, Estavillo J, et al. Impact of dimethypyrazole-based nitrification inhibitors on soil-borne bacteria. Sci Total Environ. 2021;792:1–12.
  • EPA. Biosolids Technology Factsheet. Land Application of Biosolids. EPA Office of Water. EPA. 2000. 832-F-00-064.
  • CABR working group. Compliance Offsets Protocol Task Force Draft Final Recommendations. February 8, 2021 https://ww2.arb.ca.gov/sites/default/files/2021-02/offsets_task_force_draft_final_report_020821.pdf.
  • Fertilizer costs make manure look better. Ohio State University, 2021. Accessed 6/07/23 from: https://wayne.osu.edu/news/fertilizer-costs-make-manure-look-better.
  • Wade T, Classen R, Wallander S. Conservation-Practice adoption rates vary widely by crop and region. 2015. Washington, DC: Economic Research Service.
  • Quilty JR, Cattle SR. Use and understanding of organic amendments in Australian agriculture: a review. Soil Res. 2011;49(1):1–26. doi: 10.1071/SR10059.
  • Cayuela ML, Sanchez-Monedero MA, Roig A, et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci Rep. 2013;3:1732. doi: 10.1038/srep01732.
  • Jochum MD, McWilliams KL, Pierson EA, et al. Host mediated microbiome engineering (HMME of drought tolerance in the rhizosphere). PLoS One. 2019;14(12):e0225933. doi: 10.1371/journal.pone.0225933.
  • Feng Y, Xu Y, Yu Y, et al. Mechanisms of biochar decreasing methane emission from chinese paddy soils. Soil Biol Biochem. 2012;46:80–88. doi: 10.1016/j.soilbio.2011.11.016.
  • Jeffery S, Verheijen FGA, Kamman C, et al. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol Biochem. 2016;101:251–258. doi: 10.1016/j.soilbio.2016.07.021.
  • Liu Q, Zhang Y, Liu B, et al. How does biochar influence soil N cycle? A meta-analysis. Plant Soil. 2018;426(1-2):211–225. doi: 10.1007/s11104-018-3619-4.
  • Verhoeven E, Pereira E, Decock C, et al. Toward a better assessment of biochar-nitrous oxide mitigation potential at the field scale. J Environ Qual. 2017;46(2):237–246. doi: 10.2134/jeq2016.10.0396.
  • Salomon MJ, Demarmels R, Watts-Williams SJ, et al. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl Soil Ecol. 2022;169:104225. doi: 10.1016/j.apsoil.2021.104225.
  • Navarro-Pedreno J, Almendro-Candel MB, Zorpas AA. The increase of soil organic matter reduces global warming, myth or reality? Science 2021;3(1):18. doi: 10.3390/sci3010018.
  • Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 2005;437(7058):529–533. doi: 10.1038/nature03972.
  • Franke-Whittle IH, Insam H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: a review. Crit Rev Microbiol. 2013;39(2):139–151. doi: 10.3109/1040841X.2012.694410.
  • Savin M, Alexander J, Bierbaum G, et al. Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments. Sci Rep. 2021;11(1):16622. doi: 10.1038/s41598-021-96169-y.
  • Thomas BW, Luo Y, Li C, et al. Utilizing composted beef cattle manure and slaughterhouse wasted as nitrogen and phosphorus fertilizers for calcareous soil. Compost Sci Util. 2017;25(2):102–111. doi: 10.1080/1065657X.2016.1219681.
  • Cayuela ML, Sinicco T, Mondini C. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil. Appl Soil Ecol. 2009;41(1):118–127. doi: 10.1016/j.apsoil.2008.10.001.
  • Olayemi OP, Kallenbach CM, Scheekloth JP, et al. From factory to field: effects of a novel soil amendment derived from cheese production on wheat and corn production. Front Sustain Food Syst. 2020;3:127.
  • Mona S, Malyan SK, Saini N, et al. Towards a sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere. 2021;275:129856. doi: 10.1016/j.chemosphere.2021.129856.
  • Zhao L, Cao X, Masek O, et al. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater. 2013;1:256–257. doi: 10.1016/j.jhazmat.2013.04.015.
  • Farhangi-Abriz S, Torabian S, Qin R, et al. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci Tot Environ. 2021;775:145869. doi: 10.1016/j.scitotenv.2021.145869.
  • Chintala R, Mollinedo J, Schumacher TE, et al. Effect of biochar on chemical properties of acidic soil. Arch Agron Soil Sci. 2014;60(3):393–404. doi: 10.1080/03650340.2013.789870.
  • Kammann C, Ippolito J, Hagemann N, et al. A tool to reduce the agricultural greenhouse gas burden- knowns, unknowns and future research needs. J Environ Eng Landsc Manage. 2017;25(2):114–139. doi: 10.3846/16486897.2017.1319375.
  • Hale L, Luth M, Crowley D. Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol Biochem. 2015;81:228–235. doi: 10.1016/j.soilbio.2014.11.023.
  • Sikder S, Joardar JC. Biochar production from poultry litter as a management approach and effects on plant growth. Int J Recycl Org Waste Agricult. 2019;8(1):47–58. doi: 10.1007/s40093-018-0227-5.
  • Schmidt HP, Kamman C, Hagemann N, et al. Biochar in agriculture - a systematic review of 26 global meta-analyses. GCB-Bioenergy. 2021;13(11):1708–1730. doi: 10.1111/gcbb.12889.
  • Paustian K, Lehmann J, Ogle S, et al. Climate smart soils. Nature. 2016;532(7597):49–57. doi: 10.1038/nature17174.
  • Roe S, Streck C, Beach R, et al. Land-based measures to mitigate climate change: potential and feasibility by country. Glob Chang Biol. 2021;27(23):6025–6058. doi: 10.1111/gcb.15873.
  • Woolf D, Amonette JE, Street-Perrot FA, et al. Sustainable Biochar to Mitigate Global Climate Change. Nature. 2010;1:56.
  • Lehmann J, Cowie A, Masiello CA, et al. Biochar in climate change mitigation. Nat Geosci. 2021;14(12):883–892. doi: 10.1038/s41561-021-00852-8.
  • Blanco-Canqui H, Laird DA, Heaton EA, et al. Soil carbon increased by twice the amount of biochar carbon applied after 6 years: field evidence of negative priming. Bioenergy. 2019;12:240–251.
  • Kuzyakov Y, Subbotina I, Chen H, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009;41(2):210–219. doi: 10.1016/j.soilbio.2008.10.016.
  • Singh BP, Cowie AL. Long-term influence of biochar on native organic carbon mineralization in a low-carbon clayey soil. Sci Rep. 2014;4:3687. doi: 10.1038/srep03687.
  • Fatima S, Riaz M, Al-Wabel MI, et al. Higher biochar rate strongly reduced decomposition of soil organic matter to enhance C and N sequestration in nutrient-poor alkaline calcareous soil. J Soils Sedim. 2021;21(1):148–162. doi: 10.1007/s11368-020-02753-6.
  • Khan M, Huang J, Shah A, et al. Mitigation of greenhouse gas emissions from a red acidic soil by using magnesium-modified wheat straw biochar. Environ Res. 2021;203:11879.
  • Roberts KG, Gloy B, Joseph S, et al. Life cycle assessment of biochar systems: estimating the energetic, economic and climate change potential. Environ Sci Technol. 2010;44(2):827–833. doi: 10.1021/es902266r.
  • Matuštik Hnakova T, Koci V. Life cycle assessment of biochar-to-soil systems: a review. J Clean Prod. 2020;259:120998.
  • Xiao X, Chen Z, Chen B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Sci Rep. 2016;6:22644. doi: 10.1038/srep22644.
  • Cornelissen G, Pandit N, Taylor P, et al. Emissions and char quality of Flame-Curtain "kon tiki" kilns for Farmer-Scale charcoal/biochar production. PLoS One. 2016;11(5):e0154617. doi: 10.1371/journal.pone.0154617.
  • IPCC. 2019). Appendix 4 Method for Estimating the Change in Mineral Soil Organic Carbon Stocks from Biochar Amendments: basis for Future Methodological Development. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4: agriculture, Forestry and Other Land Use.
  • Verra. 2021. Methodology for biochar utilization in soil and non-soil applications. Consortium: FORLIANCE, South Pole, and Biochar Works. In joint collaboration with Delaney Forestry Services. Accessed 7/2022 from https://verra.org/wp-content/uploads/2021/08/210803_VCS-Biochar-Methodology-v1.0-.pdf.
  • Lu Q, He ZL, Stoffella PJ. Land application of biosolids in the USA: a review. Appl Environ Soil Sci. 2012;2012:1–11. doi: 10.1155/2012/201462.
  • Leonard E, Bodas J, Brown S, et al. Carbon balance for biosolids use in commercial douglas fir plantations in the pacific northwest. J Environ Manage. 2021;295:113115. doi: 10.1016/j.jenvman.2021.113115.
  • McIvor K, Cogger C, Brown S. Effect of biosolids based soil properties on soil chemical and physical properties in urban gardens. Compost Sci Util. 2012;10:199–206. 2013
  • Brown S, Kurtz K, Bary A, et al. Quantifying benefits associated with land application of organic residuals in Washington state. Environ Sci Technol. 2011;45(17):7451–7458. doi: 10.1021/es2010418.
  • Villa YB, Ryals R. Soil carbon response to long-term biosolids application. J Environ Qual. 2021;50(5):1084–1096. doi: 10.1002/jeq2.20270.
  • Wallace BM, Krzic M, Forge TA, et al. Biosolids increase soil aggregation and protection of soil carbon five years after application on a crested wheatgrass pasture. J Environ Qual. 2009;38(1):291–298. doi: 10.2134/jeq2007.0608.
  • Tian G, Granato TC, Cox AE, et al. Soil carbon sequestration resulting from long-term application of biosolids for land reclamation. J Environ Qual. 2009;38(1):61–74. doi: 10.2134/jeq2007.0471.
  • Williams DE, Vlamis J, Pukite A, et al. Trace element accumulation, movement and distribution in the soil profile from massive applications of sewage sludge. Soil Sci. 1980;129(2):119. doi: 10.1097/00010694-198002000-00007.
  • Ryals R, Silver W. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands. Ecol Appl. 2013;23(1):46–59. doi: 10.1890/12-0620.1.
  • Blumenthal DM, LeCain DR, Augustine DJ. Composted manure application promotes long-term invasion of semi-arid rangeland by bromus tectorum. Ecosphere. 2017;8(10):e01960. doi: 10.1002/ecs2.1960.
  • Tautges NE, Chiartas JL, Gaudin ACM, et al. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Glob Change Biol. 2019;25:3754–3766.
  • Leip A, Busto M, Winiwarter W. Developing spatially stratified N2O emission factors for Europe. Environ Poll. 2011;159(11):3223–3232. doi: 10.1016/j.envpol.2010.11.024.
  • Liu M, Qiao N, Xu X, et al. C:N stoichiometry of stable and labile organic compounds determine priming patterns. Geoderma. 2021;362:11422.
  • Sánchez A, Artola A, Font X, et al. Greenhouse gas emissions from organic waste composting. Environ Chem Lett. 2015;13(3):223–238. doi: 10.1007/s10311-015-0507-5.
  • Bogaard A, Fraser R, Heaton THE, et al. Crop manuring and intensive land management by europe’s first farmers. Proc Natl Acad Sci USA. 2013;110(31):12589–12594. doi: 10.1073/pnas.1305918110.
  • Li XR, Zhang P, Su YG, et al. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: a four year field study. Catena. 2012;97:119–126. doi: 10.1016/j.catena.2012.05.009.
  • Insam H, Gómez-Brandón M, Ascher J. Manure-based biogas fermentation residues – friend or foe of soil fertility? Soil Biol Biochem. 2015;84:1–14. doi: 10.1016/j.soilbio.2015.02.006.
  • Pires AFA, Millner PD, Baron J. Assessment of current practices of organic farmers regarding biological soil amendments of animal origin in a multi-regional US study. Food Prod Trends. 2018;38:347–362.
  • Maillard É, Angers DA. Animal manure application and soil organic carbon stocks: a meta-analysis. Glob Chang Biol. 2014;20(2):666–679. doi: 10.1111/gcb.12438.
  • Gross A, Glaser B. Meta-analysis on how manure application changes soil organic carbon storage. Sci Rep. 2021;11(1):5516. doi: 10.1038/s41598-021-82739-7.
  • Poulton P, Johnston J, Macdonald A, et al. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: evidence from long-term experiments at rothamsted research, United Kingdom. Glob Chang Biol. 2018;24(6):2563–2584. doi: 10.1111/gcb.14066.
  • Guenet B, Gabrielle B, Chenu C, et al. Can N2O emissions offset the benefits from soil organic carbon storage? Glob Change Biol. 2021;27(2):237–256. doi: 10.1111/gcb.15342.
  • Owen JJ, Parton WJ, Silver WL. Long-term impacts of manure amendments on carbon and greenhouse gas dynamics of rangelands. Glob Change Biol. 2015;21(12):4533–4547. doi: 10.1111/gcb.13044.
  • Schlesinger WH. Carbon sequestration in soils: some cautions amidst optimism. Agric Ecosyst Environ. 2000;82(1-3):121–127. doi: 10.1016/S0167-8809(00)00221-8.
  • Zhang B, Tian H, Lu C, et al. Global manure nitrogen production and application in cropland during 1860-2014: a 4 arcmin gridded global dataset for earth system modeling. Earth Syst Sci Data. 2017;9(2):667–678. doi: 10.5194/essd-9-667-2017.
  • Key N, Sneeringer S. Carbon emissions, renewable electricity, and profits: comparing policies to promote anaerobic digestion on dairies. Agric Resour Econ Rev. 2012;41(2):139–157. doi: 10.1017/S1068280500003312.
  • Iqbal R, Raza MAS, Valipour M, et al. Potential agricultural and environmental benefits of mulches – a review. Bull Nat Res Centre. 2020;44:75.
  • Akhtar K, Wang W, Khan A, et al. Wheat straw mulching offset soil moisture deficiency for improving phyiological and growth performance of summer soybean. Agric Water Manage. 2019;211:16–25. doi: 10.1016/j.agwat.2018.09.031.
  • Cotrufo MF, Wallenstein MD, Boot CM, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol. 2013;19(4):988–995. doi: 10.1111/gcb.12113.
  • Wu L, Zhang W, Wei W, et al. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biol Biochem. 2019;135:383–391. doi: 10.1016/j.soilbio.2019.06.003.
  • Fontaine S, Mariotti A, Abbadie L. The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem. 2003;35(6):837–843. doi: 10.1016/S0038-0717(03)00123-8.
  • Liu C, Lu M, Cui J, et al. Effect of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Glob Chang Biol. 2014;20(5):1366–1381. doi: 10.1111/gcb.12517.
  • Bamber N, Jones M, Nelson L, et al. Life cycle assessment of mulch use on okanagan apple orchards: part 1 - Attributional. J Clean Prod. 2020;267:121960. doi: 10.1016/j.jclepro.2020.121960.
  • Chamizo S, Mugnai G, Rossi F, et al. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci. 2018;6:1–14. doi: 10.3389/fenvs.2018.00049.
  • Khoja TM. Heterotrophic growth of blue-green algae Doctoral thesis, Durham University. 1973 http://etheses.dur.ac.uk/1315/.
  • Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev. 2002;66(1):94–121; table of contents. doi: 10.1128/MMBR.66.1.94-121.2002.
  • Ronga D, Biazzi E, Parati K, et al. Microalgal biostimulants and biofertilisers in crop productions. Agronomy. 2019;9(4):192. doi: 10.3390/agronomy9040192.
  • Goncalves AL. The use of microalgae and cyanobacteria in the improvement of agricultural practices: a review on their biofertilising, biostimulating and biopesticide roles. Appl Sci. 2021;11(2):871. doi: 10.3390/app11020871.
  • De PK. The role of blue-green algae in nitrogen fixation in rice-fields. Proc R Soc B. 1939;127:121–139.
  • Kollah B, Patra AK, Mohanty SR. Aquatic microphylla azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res. 2016;23(5):4358–4369. doi: 10.1007/s11356-015-5857-9.
  • Nascimento MD, Battaglia ME, Rizza LS, et al. Prospects of using biomass N2-fixing cyanobacteria as an organic fertilizer and soil conditioner. Algal Res. 2019;43:101652. doi: 10.1016/j.algal.2019.101652.
  • Alvarez AL, Weyers SL, Goemann HM, et al. Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res. 2021;54:2211–9264.
  • Li G, Xiao W, Yang T, et al. Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: a comprehensive review. C J Carbon Res. 2023;9(1):35. doi: 10.3390/c9010035.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306. doi: 10.1016/j.biotechadv.2007.02.001.
  • Das NP, Kumar A, Singh PK. Cyanobacteria, pesticides and rice interaction. Biodivers Conserv. 2015;24(4):995–1005. doi: 10.1007/s10531-015-0886-8.
  • Song X, Zhang J, Peng C, et al. Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields. Agric Ecosys Environ. 2021;312:107320. doi: 10.1016/j.agee.2021.107320.
  • Williams W, Budel B, Williams S. Wet season cyanobacterial N enrichment highly correlated with species richness and nostoc in the Northern Australian savannah. Biogeosciences. 2018;15(7):2149–2159. doi: 10.5194/bg-15-2149-2018.
  • Russow R, Veste M, Böhme F. A natural N-15 approach to determine biological fixation of atmospheric nitrogen by biological soil crusts of the negev desert. Rapid Commun Mass Spectrom. 2005;19(23):3451–3456. doi: 10.1002/rcm.2214.
  • Booshan N, Pabbi S, Singh A. Impact of blue green algae (BGA) technology: an empirical evidence from northwestern Indo-Gangetic plains. Biotechnology. 2018;8:324.
  • Osman MEH, El-Sheekh MM, Naggar AH, et al. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth and yield of pea plant. Biol Fertil Soils. 2010;46(8):861–875. doi: 10.1007/s00374-010-0491-7.
  • Nascimento MD, Rizza L, Di Palma AA, et al. Cyanobacterial biological nitrogen fixation as a sustainable nitrogen fertilizer for the production of microalgal oil. Algal Res. 2015;12:142–148.
  • Dojani S, Büdel B, Deutschewitz K, et al. Rapid succession of biological soil crusts after experimental disturbance in the succulent karoo, South Africa. Appl Soil Ecol. 2011;48(3):263–269. doi: 10.1016/j.apsoil.2011.04.013.
  • Razon LF. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing cyanobacteria. Bioresour Technol. 2012;107:339–346. doi: 10.1016/j.biortech.2011.12.075.
  • Bauer L, Ranglová K, Masojídek J, et al. Digestate as a sustainable nutrient source for microalgae-challenges and prospects. Appl Sci. 2021;11(3):1056. doi: 10.3390/app11031056.
  • Solovchenko A, Verschoor AM, Jablanoski ND. Phosphorus from wastewater to crops: an alternative path involving microalgae. Biotech Adv. 2015;:07012.
  • Pereira L, Cotas J. Historical use of seaweed as an agricultural fertilizer in the European Atlantic Area. In: seaweeds as Plant Fertilizer, Agricultural Biostimulants and Animal Fodder. In Seaweeds as plant fertilizer, agricultural biostimulants and animal fodder. Chapter 1. Boca Raton, FL: CRC Press; 2019.
  • Duarte CM, Wu J, Xiao X, et al. Can seaweed farming play a role in climate change mitigation and adaptation? Front Mar Sci. 2017;4:1–8. doi: 10.3389/fmars.2017.00100.
  • EL Boukhari MEM, Barakate M, Bouhia Y, et al. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants. 2020;9(3):359. doi: 10.3390/plants9030359.
  • Sible CN, Seebauer JR, Below FE. Plant biostimulants: a categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy. 2021;11(7):1297. doi: 10.3390/agronomy11071297.
  • Khan W, Rayirath UP, Subramanian S, et al. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul. 2009;28(4):386–399. doi: 10.1007/s00344-009-9103-x.
  • Filbee-Dexter K, Feehan C, Smale D, et al. Ocean temperature controls kelp decomposition and carbon sink potential. 2020 Preprint (Research Square).
  • Santaniello A, Scartazza A, Gresta F, et al. Ascophyllum nodosum seaweed extract alleviates drought stress in arabidopsis by affecting photosynthetic performance and related gene expression. Front Plant Sci. 2017;8:1362. doi: 10.3389/fpls.2017.01362.
  • Suh S, Johnson JA, Tambjerg L, et al. Closing yield gap is crucial to avoid potential surge in global carbon emissions. Glob Environ Change. 2020;63:102100. doi: 10.1016/j.gloenvcha.2020.102100.
  • Shukla PS, Mantin EG, Adil M, et al. Ascophyllum nodosim-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth- stress tolerance and disease management. Front Plant Sci. 2019;20:665.
  • Roberts DA, Paul NA, Dworjanyn SA, et al. Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep. 2015;5:9665. doi: 10.1038/srep09665.
  • Fesel P, Zuccaro A. Dissecting endophytic lifestyle along the parasitism/mutualism continuum in arabidopsis. Curr Opin Microbiol. 2016;32:103–112. doi: 10.1016/j.mib.2016.05.008.
  • Hardoim PR, van Overbeek LS, Berg G, et al. The hidden world within plants: ecological and evolutionary consideriona for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79(3):293–320. doi: 10.1128/MMBR.00050-14.
  • Smith SE, Read DJ. The mycorrhizal symbiosis. Academic Press, San Diego, CA. 2008.
  • Witzgall K, Vidal A, Schubert D, et al. 2021 (preprint). Soil organic carbon under lockdown: fresh plant litter as the nucleus for persistent carbon.
  • Li N, Xu Y, Han X, et al. Fungi contribute more than bacteria to soil organic matter through necromass accumulation under different agricultural practices. Eur J Biol. 2015;67:51–58.
  • Shahzad R, Khan AL, Bilal S, et al. What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci. 2018;9:24. doi: 10.3389/fpls.2018.00024.
  • Geisen S, Kostenko O, Cnossen MC, et al. Seed and root endophytic fungi in a range expanding and a related plant species. Front Microb. 2017;8:1–11.
  • Mack KML, Rudgers JA. Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Environ Sci Ecol. 2008;117:310–320.
  • Newsham KK. A meta-analysis of plant response to dark septate root endophytes. New Phytol. 2011;190(3):783–793. doi: 10.1111/j.1469-8137.2010.03611.x.
  • Della Monica IF, Saparrat MCN, Godeas AM, et al. The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fungal Ecol. 2015;17:10–17. doi: 10.1016/j.funeco.2015.04.004.
  • Berthelot C, Chalot M, Leyval C, et al. From darkness to light: emergence of the mysterious dark septate endophytes in plant growth promotion and stress alleviation. In T. R. Hodkinson, F. M. Doohan, M. J. Saunders, & B. R. Murphy (Eds.), Endophytes for a growing world 2019. (pp. 143–164. Cambridge: Cambridge University Press.
  • Thapa S, Rai N, Limbu A, et al. Impact of trichoderma sp. in agriculture: a mini review. J Biol Todays World. 2020;9:7227.
  • Harman GE. Overview of mechanisms and uses of trichoderma spp. Phytopathology. 2006;96(2):190–194. doi: 10.1094/PHYTO-96-0190.
  • Elnahal ASM, El-Saadony MT, Saad AM, et al. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol. 2022;162(4):1007–1007. Springer Netherlands. doi: 10.1007/s10658-022-02472-3.
  • Rillig MC, Aguilar-Trigueros CA, Camenzind T, et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 2019;222(3):1171–1175. doi: 10.1111/nph.15602.
  • Ryan MH, Graham JH, Morton JB, et al. Research must use a systems agronomy approach if management of the arbuscular mycorrhizal symbiosis is to contribute to sustainable intensification. New Phytol. 2019;222(13):1–3.
  • Säle V, Palenzuela J, Azcón-Aguilar C, et al. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza. 2021;31(5):559–576. doi: 10.1007/s00572-021-01042-5.
  • Sepp SK, Davison J, Jairus T, et al. Non-random association patterns in a plant–mycorrhizal fungal network reveal host–symbiont specificity. Mol Ecol. 2019;28(2):365–378. doi: 10.1111/mec.14924.
  • Boddington CL, Dodd JC. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. Studies in experimental microcosms. Plant Soil. 2000;218:145–157.
  • Schwartz MW, Hoeksema JD, Gehring CA, et al. The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett. 2006;9(5):501–515. doi: 10.1111/j.1461-0248.2006.00910.x.
  • Ryan MH, Graham JH. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 2018;220(4):1092–1107. doi: 10.1111/nph.15308.
  • Hart MM, Antunes PM, Chaudhary VB, et al. Fungal inoculants in the field: is the reward greater than the risk? Funct Ecol. 2018;32(1):126–135. doi: 10.1111/1365-2435.12976.
  • Verzeaux J, Hirel B, Dubois F, et al. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic impacts. Plant Sci. 2017;264:48–56. doi: 10.1016/j.plantsci.2017.08.004.
  • Dietrich P, Roscher C, Clark AT, et al. Diverse plant mixtures sustain a greater arbuscular mycorrhizal spore viability than monocultures after 12 years. J Plant Ecol. 2020;13(4):478–488. doi: 10.1093/jpe/rtaa037.
  • Contos P, Wood JL, Murphy NP, et al. Rewilding with invertebrates and microbes to restore ecosystems: present trends and future directions. Ecol Evol. 2021;11(12):7187–7200. doi: 10.1002/ece3.7597.
  • Wubs ERJ, Putten WH, Mortimer SR, et al. Single introductions of soil biota and plants generate long-term legacies in plant community assembly. Ecol Lett. 2019;22(7):1145–1151. doi: 10.1111/ele.13271.
  • Bago B, Pfeffer PE, Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol. 2000;124(3):949–958. doi: 10.1104/pp.124.3.949.
  • Gavito ME, Jakobsen I, Mikkelsen TN, et al. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induces carbon sink strength. New Phytol. 2019;223(2):896–907. doi: 10.1111/nph.15806.
  • Talbot JM, Allison SD, Treseder KK. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change. Funct Ecol. 2008;22(6):955–963. doi: 10.1111/j.1365-2435.2008.01402.x.
  • Treseder KK, Holden SR. Fungal carbon sequestration. Science. 2013;338:6127.
  • Wilson GWT, Rice CH, Rillig MC, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of mycorrhizal fungi: results from long-term field experiments. Ecol Lett. 2009;12(5):452–461. doi: 10.1111/j.1461-0248.2009.01303.x.
  • Cheng L, Booker FL, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science. 2012;337(6098):1084–1087. doi: 10.1126/science.1224304.
  • Verbruggen E, Veresoglou SD, Anderson IC, et al. Arbuscular mycorrhial fungi: short term liability but long term benefits for soil carbon storage? New Phytol. 2013;197(2):366–368. doi: 10.1111/nph.12079.
  • Agnihotri R, Sahni S, Sharma MP, et al. Facets of AM fungi in sequestering soil carbon and improving soil health. In Fungal diversity, ecology and control management. Springer, Singapore. 2022;327–344.
  • Franzluebbers AJ, Nazih N, Stuedemann JA, et al. Soil carbon and nitrogen pools under low-and high-endophyte infected tall fescue. Soil Sci Soc Am J. 1999;63(6):1687–1694. doi: 10.2136/sssaj1999.6361687x.
  • He C, Wang W, Hou J. Plant growth and soil microbial impact of enhancing licorice with inoculating dark septate endophytes under drought stress. Front Microbiol. 2019;10:2277. doi: 10.3389/fmicb.2019.02277.
  • Iqbal J, Siegrist JA, Nelson JA, et al. Fungal endophyte infection increases soil carbon sequestration potential of southeastern USA tall fescue stands. Soil Biol Biochem. 2012;44(1):81–92. doi: 10.1016/j.soilbio.2011.09.010.
  • Franzleubbers AJ. Short-term responses of soil C and N fractions to tall fescue endophyte infection. Plant Soil. 2006;383:153–164.
  • Jenkins MB, Franzluebbers AJ, Humayoun SB. Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to tall fescue endophyte infection. Plant Soil. 2006;289(1–2):309–320. doi: 10.1007/s11104-006-9141-0.
  • Omacini M, Semmartin M, Pérez LI, et al. Grass-endophyte symbiosis: a neglected aboveground interaction with multiple belowground consequences. Appl Soil Ecol. 2012;61:273–279. doi: 10.1016/j.apsoil.2011.10.012.
  • Kane KH. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the mediterranean region. Environ Exp Bot. 2011;71:337–344. doi: 10.1016/j.envexpbot.2011.01.002.
  • Kivlin SN, Emery SM, Rudgers JA. Fungal symbionts alter plant responses to global change. Am J Bot. 2013;100(7):1445–1457. doi: 10.3732/ajb.1200558.
  • Butler JL, Bottomley PJ, Griffith SM, et al. Distribution and turnover of recently fixed photosynthate in ryegrass rhizospheres. Soil Biol Biochem. 2004;36(2):371–382. doi: 10.1016/j.soilbio.2003.10.011.
  • Nguyen C. Rhizodeposition of organic C by plant: mechanisms and controls. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C. (eds) Sustainable Agriculture. Springer, Dordrecht, pp. 97–123; 2009. doi: 10.1007/978-90-481-2666-8_9.
  • Swinnen J, Van Veen JA, Merckx R. Carbon fluxes in the rhizosphere of winter wheat and spring barley with conventional vs integrated farming. Soil Biol Biochem. 1995;27(6):811–820. doi: 10.1016/0038-0717(94)00230-X.
  • Fan K, Weisenhorn P, Gilbert J, et al. Soil pH correlates with the co-occurence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol Biochem. 2018;121:185–192. doi: 10.1016/j.soilbio.2018.03.017.
  • Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci. 2014;5:723. doi: 10.3389/fpls.2014.00723.
  • Timmusk S, Timmusk K, Behers L. Rhizobacterial plant drought stress tolerance enhancement: towards sustainable water resource management and food security. J Food Sec. 2013;1:6–9.
  • Rubin RL, van Groenigen KJ, Hungate BA. Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant Soil. 2017;416(1–2):309–323. doi: 10.1007/s11104-017-3199-8.
  • Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability: a review. Molecules. 2016;21(5):573. doi: 10.3390/molecules21050573.
  • Harman GE, Doni F, Khadka RB, et al. Endophytic strains of trichoderma increase plants’ photosynthetic capability. J Appl Microbiol. 2021;130(2):529–546. doi: 10.1111/jam.14368.
  • Berhongaray G, Cotrufo FM, Janssens IA, et al. Below-ground carbon inputs contribute more than above-ground inputs to soil carbon accrual in a bioenergy poplar plantation. Plant Soil. 2019;434(1-2):363–378. doi: 10.1007/s11104-018-3850-z.
  • Rubin RL, Jones AN, Hayer MH, et al. Opposing effects of bacterial endophytes on biomass allocation of a wild donor and agricultural recipient. FEMS Microb Ecol. 2020;96:fia012.
  • Nie M, Bell C, Wallenstein MD, et al. Increased plant productivity and decreased microbial respiratory C loss by plant growth-promoting rhizobacteria under elevated CO2. Sci Rep. 2015;5:9212. doi: 10.1038/srep09212.
  • Sethi S, Gupta S. Impact of pesticides and biopesticides on soil microbial biomass carbon. Univ J Sci Res Technol. 2013;3(2):326–330.
  • Calvo P, Watts DB, Ames RN, et al. Microbial-based inoculants impact nitrous oxide emissions from an incubated soil medium containing urea fertilizers. J Environ Qual. 2013;42(3):704–712. doi: 10.2134/jeq2012.0300.
  • Souza EFC, Rosen CJ, Venterea RT. Contrasting effects of inhibitors and biostimulants on agronomic performance and reactive nitrogen losses during irrigated potato production. Field Crops Res. 2019;240:143–153. doi: 10.1016/j.fcr.2019.05.001.
  • Tennakoon PLK, Rajapaksha RMCP, Hettiarachchi LSK. Tea yield maintained in PGPR inoculated field plants despite significant reduction in fertilizer application. Rhizosphere. 2019;10:100146. doi: 10.1016/j.rhisph.2019.100146.
  • Berninger T, González López Ó, Bejarano A, et al. Maintenance and assessment of cell viability in formulation of non-sporulating inoculants. Microb Biotechnol. 2018;11(2):277–301. doi: 10.1111/1751-7915.12880.
  • Yang M, Fang Y, Sun D, et al. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Sci Rep. 2016;6(1):10. doi: 10.1038/srep22075.
  • Guardia G, Marsden KA, Vallejo A, et al. Determining the influence of environmental and edaphic factors on the fate of the nitrification inhibitors DCD and DMPP in soil. Sci Total Environ. 2018;624:1202–1212. doi: 10.1016/j.scitotenv.2017.12.250.
  • Dalal RC, Wang W, Robertson GP, et al. Nitrous oxide emission from Australian agricultural lands and mitigation options: a review. Australian journal of. Soil Res. 2003;41(2):165–195. doi: 10.1071/SR02064.
  • Subbarao GV, Searchinger TD. A “more ammonium solution” to mitigate nitrogen pollution and boost crop yields. PNAS. 2021;118(22):e2107576118.
  • Lam SK, Suter H, Mosier AR, et al. Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword? Glob Change Biol. 2017;23(2):485–489. doi: 10.1111/gcb.13338.