7,193
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Omega 3 fatty acids, inflammation and DNA methylation: an overview

ORCID Icon ORCID Icon, ORCID Icon & ORCID Icon
Pages 24-32 | Received 24 Dec 2016, Accepted 11 Apr 2017, Published online: 02 May 2017

References

  • Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr. 1999;70:560S–569S.
  • Verlengia R, Gorjao R, Kanunfre C, et al. Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells. J Nutr Biochem. 2004;15:657–665.10.1016/j.jnutbio.2004.04.008
  • Trebble T, Arden NK, Stroud MA, et al. Inhibition of tumour necrosis factor-α and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br J Nutr. 2003;90:405–412.10.1079/BJN2003892
  • Endres S, Ghorbani R, Kelley VE, et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med. 1989;320:265–271.10.1056/NEJM198902023200501
  • Yaqoob P, Calder P. Effects of dietary lipid manipulation upon inflammatory mediator production by murine macrophages. Cell Immunol. 1995;163:120–128.10.1006/cimm.1995.1106
  • Richard C, Lewis ED, Goruk S, et al. A dietary supply of docosahexaenoic acid early in life is essential for immune development and the establishment of oral tolerance in female rat offspring. J Nutr. 2016;146:2398–2406.10.3945/jn.116.237149
  • Olson MV, Liu Y-C, Dangi B, et al. Docosahexaenoic acid reduces inflammation and joint destruction in mice with collagen-induced arthritis. Inflamm Res. 2013;62:1003–1013.10.1007/s00011-013-0658-4
  • Al-Khalifa H, Givens DI, Rymer C, et al. Effect of n-3 fatty acids on immune function in broiler chickens. Poult Sci. 2012;91:74–88.10.3382/ps.2011-01693
  • Itariu BK, Zeyda M, Hochbrugger EE, et al. Long-chain n-3 PUFAs reduce adipose tissue and systemic inflammation in severely obese nondiabetic patients: a randomized controlled trial. Am J Clin Nutr. 2012;96:1137–1149.10.3945/ajcn.112.037432
  • Tartibian B, Maleki BH, Abbasi A. Omega-3 fatty acids supplementation attenuates inflammatory markers after eccentric exercise in untrained men. Clin J Sport Med. 2011;21:131–137.10.1097/JSM.0b013e31820f8c2f
  • Calder PC. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochem Biophys Acta – Mol Cell Biol Lipids. 2015;1851:469–484.
  • Rudkowska I, Paradis A-M, Thifault E, et al. Transcriptomic and metabolomic signatures of an n-3 polyunsaturated fatty acids supplementation in a normolipidemic/normocholesterolemic Caucasian population. J Nutr Biochem. 2013;24:54–61.10.1016/j.jnutbio.2012.01.016
  • Bouwens M, van de Rest O, Dellschaft N, et al. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells. Am J Clin Nutr. 2009;90:415–424.10.3945/ajcn.2009.27680
  • Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.
  • Huang B, Jiang C, Zhang R. Epigenetics: the language of the cell? Epigenomics. 2014;6:73–88.10.2217/epi.13.72
  • Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–681.10.1016/j.cell.2007.01.033
  • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–837.10.1016/j.cell.2007.05.009
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.10.1016/j.cell.2007.02.005
  • Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–412.10.1038/nature05915
  • Jenuwein T. Translating the histone code. Science (80-.). 2001;293:1074–1080.
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.10.1101/gad.947102
  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Ann Rev Biochem. 2005;74:481–514.10.1146/annurev.biochem.74.010904.153721
  • Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15:R17–R29.10.1093/hmg/ddl046
  • Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–692.10.1016/j.cell.2007.01.029
  • Park LK, Friso S, Choi S-W. Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc. 2012;71:75–83.10.1017/S0029665111003302
  • Brunet A, Berger SL. Epigenetics of aging and aging-related disease. J Gerontol Ser A Biol SciMed Sci. 2014;69:S17–S20.
  • Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16:593–610.10.1038/nrm4048
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–1068.10.1038/nbt.1685
  • Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28:1069–1078.10.1038/nbt.1678
  • Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293:1068–1070.10.1126/science.1063852
  • Gilbert SF. Ageing and cancer as diseases of epigenesis. J Biosci. 2009;34:601–604.10.1007/s12038-009-0077-4
  • Wilson VL, Smith RA, Ma S, et al. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987;262:9948–9951.
  • Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14:924–932.10.1111/acel.12349
  • Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002;21:5400–5413.10.1038/sj.onc.1205651
  • Muka T, Koromani F, Portilla E, et al. The role of epigenetic modifications in cardiovascular disease: a systematic review. Int J Cardiol. 2016;212:174–183.10.1016/j.ijcard.2016.03.062
  • Lam LL, Emberly E, Fraser HB, et al. Factors underlying variable DNA methylation in a human community cohort. Proc Nat Acad Sci. 2012;109:17253–17260.10.1073/pnas.1121249109
  • Gomes MVM, Toffoli LV, Arruda DW, et al. Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to Functional capacities. Suzuki H, editor. PLoS ONE. 2012;7:e52570.10.1371/journal.pone.0052570
  • Choi S-W, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1:8–16.10.3945/an.110.1004
  • Bacalini MG, Friso S, Olivieri F, et al. Present and future of anti-ageing epigenetic diets. Mech Ageing Dev. 2014;136–137:101–115.10.1016/j.mad.2013.12.006
  • Aslibekyan S, Wiener HW, Havel PJ, et al. DNA methylation patterns are associated with n-3 fatty acid intake in Yup’ik people. J Nutr. 2014;144:425–430.10.3945/jn.113.187203
  • Bersamin A, Luick BR, King IB, et al. Westernizing diets influence fat intake, red blood cell fatty acid composition, and health in remote alaskan native communities in the center for alaska native health study. J Am Diet Assoc. 2008;108:266–273.10.1016/j.jada.2007.10.046
  • O’Brien DM, Kristal AR, Jeannet MA, et al. Red blood cell 15 N: a novel biomarker of dietary eicosapentaenoic acid and docosahexaenoic acid intake. Am J Clin Nutr. 2009;89:913–919.10.3945/ajcn.2008.27054
  • Chen RZ, Pettersson U, Beard C, et al. DNA hypomethylation leads to elevated mutation rates. Nature. 1998;395:89–93.
  • Voisin S, Almén MS, Moschonis G, et al. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet. 2015;23:654–662.10.1038/ejhg.2014.139
  • Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65:1645S–1654S.
  • Das UN. Beneficial effect(s) of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostaglandins. Leukot Essent Fat Acids. 2000;63:351–362.10.1054/plef.2000.0226
  • Raatz SK, Johnson LK, Rosenberger TA, et al. Twice weekly intake of farmed Atlantic salmon (Salmo salar) positively influences lipoprotein concentration and particle size in overweight men and women. Nutr Res. 2016;36:899–906.10.1016/j.nutres.2016.06.011
  • Dekkers KF, van Iterson M, Slieker RC, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17:138–150.10.1186/s13059-016-1000-6
  • Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.10.1056/NEJMra0708473
  • Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305:1733–1736.10.1126/science.1095292
  • Amarasekera M, Noakes P, Strickland D, et al. Epigenome-wide analysis of neonatal CD4 + T-cell DNA methylation sites potentially affected by maternal fish oil supplementation. Epigenetics. 2014;9:1570–1576.10.4161/15592294.2014.983366
  • Lind MV, Martino D, Harsløf LBS, et al. Genome-wide identification of mononuclear cell DNA methylation sites potentially affected by fish oil supplementation in young infants: a pilot study. Prostaglandins Leukot Essent Fat Acids. 2015;101:1–7.10.1016/j.plefa.2015.07.003
  • van Dijk SJ, Zhou J, Peters TJ, et al. Effect of prenatal DHA supplementation on the infant epigenome: results from a randomized controlled trial. Clin Epigenetics. 2016;8:114–127.10.1186/s13148-016-0281-7
  • Burdge GC, Wootton SA. Conversion of α-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr. 2002;88:411–422.10.1079/BJN2002689
  • Burdge GC, Jones AE, Wootton SA. Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men. Br J Nutr. 2002;88:355–363.10.1079/BJN2002662
  • Lohner S, Fekete K, Marosvölgyi T, et al. Gender differences in the long-chain polyunsaturated fatty acid status: systematic review of 51 publications. Ann Nutr Metab. 2013;62:98–112.10.1159/000345599
  • Zhang FF, Cardarelli R, Carroll J, et al. Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics. 2011;6:623–629.10.4161/epi.6.5.15335
  • Dedeurwaerder S, Defrance M, Bizet M, et al. A comprehensive overview of infinium human methylation 450 data processing. Brief Bioinform. 2014;15:929–941.10.1093/bib/bbt054
  • Zhu Z-Z, Hou L, Bollati V, et al. Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis. Int J Epidemiol. 2012;41:126–139.10.1093/ije/dyq154
  • Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.10.1038/35057062
  • Schmid CW. Does SINE evolution preclude Alu function? Nucleic Acids Res. 1998;26:4541–4550.10.1093/nar/26.20.4541
  • Kochanek S, Renz D, Doerfler W. DNA methylation in the Alu sequences of diploid and haploid primary human cells. EMBO J. 1993;12:1141–1151.
  • Kemp JR, Longworth MS. Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer. Front Chem. 2015;3:68.
  • Agodi A, Barchitta M, Quattrocchi A, et al. Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes Nutr. 2015;10:30.10.1007/s12263-015-0480-4
  • Garcia-Lacarte M, Milagro FI, Zulet MA, et al. LINE-1 methylation levels, a biomarker of weight loss in obese subjects, are influenced by dietary antioxidant capacity. Redox Rep. 2016;21:67–74.10.1179/1351000215Y.0000000029
  • Marques-Rocha JL, Milagro FI, Mansego ML, et al. LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals. Epigenetics. 2016;11:49–60.10.1080/15592294.2015.1135286
  • Zhang FF, Morabia A, Carroll J, et al. Dietary patterns are associated with levels of global genomic DNA methylation in a cancer-free population. J Nutr. 2011;141:1165–1171.10.3945/jn.110.134536
  • Schulz WA, Steinhoff C, Florl AR. Methylation of endogenous human retroelements in health and disease.In: Doerfler W, Böhm P, editors. DNA methylation Development Genetic Disease, and Cancer. Berlin, Heidelberg: Springer; 2006. p. 211–250.10.1007/3-540-31181-5
  • Joyce BT, Gao T, Zheng Y, et al. Prospective changes in global DNA methylation and cancer incidence and mortality. Br J Cancer. 2016;115:465–472.10.1038/bjc.2016.205
  • Baccarelli A, Wright R, Bollati V, et al. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology. 2010;21:819–828.10.1097/EDE.0b013e3181f20457
  • Bollati V, Schwartz J, Wright R, et al. Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009;130:234–239.10.1016/j.mad.2008.12.003
  • Jintaridth P, Mutirangura A. Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol Genomics. 2010;41:194–200.10.1152/physiolgenomics.00146.2009
  • Lee H-S, Barraza-Villarreal A, Hernandez-Vargas H, et al. Modulation of DNA methylation states and infant immune system by dietary supplementation with -3 PUFA during pregnancy in an intervention study. Am J Clin Nutr. 2013;98:480–487.10.3945/ajcn.112.052241
  • Mickleborough TD, Tecklenburg SL, Montgomery GS, et al. Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting proinflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells. Clin Nutr. 2009;28:71–77.10.1016/j.clnu.2008.10.012
  • Gorjão R, Azevedo-Martins AK, Rodrigues HG, et al. Comparative effects of DHA and EPA on cell function. Pharmacol Ther. 2009;122:56–64.10.1016/j.pharmthera.2009.01.004
  • Turk HF, Chapkin RS. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fat Acids. 2013;88:43–47.10.1016/j.plefa.2012.03.008
  • Kim W, Fan Y-Y, Barhoumi R, et al. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. J Immunol. 2008;181:6236–6243.10.4049/jimmunol.181.9.6236
  • Chapkin RS, Wang N, Fan Y-Y, et al. Docosahexaenoic acid alters the size and distribution of cell surface microdomains. Biochim Biophys Acta Biomembr. 2008;1778:466–471.10.1016/j.bbamem.2007.11.003
  • Reseland JE, Haugen F, Hollung K, et al. Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J Lipid Res. 2001;42:743–750.
  • Shen W, Wang C, Xia L, et al. Epigenetic modification of the leptin promoter in diet-induced obese mice and the effects of N-3 polyunsaturated fatty acids. Sci Rep. 2014;4:5282.
  • Fan C, Liu X, Shen W, et al. The regulation of leptin, leptin receptor and pro-opiomelanocortin expression by N-3 Pufas in diet-induced obese mice is not related to the methylation of their promoters. Nutr Metab (Lond). 2011;8:31.10.1186/1743-7075-8-31
  • Vallvé J-C, Uliaque K, Girona J, et al. Unsaturated fatty acids and their oxidation products stimulate CD36 gene expression in human macrophages. Atherosclerosis. 2002;164:45–56.10.1016/S0021-9150(02)00046-1
  • Alexander Aguilera A, Hernández Díaz G, Lara Barcelata M, et al. Induction of Cd36 expression elicited by fish oil PUFA in spontaneously hypertensive rats. J Nutr Biochem. 2006;17:760–765.10.1016/j.jnutbio.2005.12.007
  • Do Amaral CL, Milagro FI, Curi R, et al. DNA methylation pattern in overweight women under an energy-restricted diet supplemented with fish oil. Biomed Res Int. 2014;2014:1–10.
  • Varela-Moreiras G, Ruiz E, Valero T, et al. The Spanish diet: an update. Nutr Hosp. 2013;28:13–20.
  • Parra D, Ramel A, Bandarra N, et al. A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008;51:676–680.10.1016/j.appet.2008.06.003
  • Benatti P, Peluso G, Nicolai R, et al. Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. J Am Coll Nutr. 2004;23:281–302.10.1080/07315724.2004.10719371
  • Nakamura MT, Nara TY. Structure, function, and dietary regulation oF Δ6, Δ5, and Δ9 desaturases. Ann Rev Nutr. 2004;24:345–376.10.1146/annurev.nutr.24.121803.063211
  • Marquardt A, Stöhr H, White K, et al. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics. 2000;66:175–183.10.1006/geno.2000.6196
  • Glaser C, Heinrich J, Koletzko B. Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism. 2010;59:993–999.10.1016/j.metabol.2009.10.022
  • Hoile SP, Clarke-Harris R, Huang R-C, et al. Supplementation with N-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the DNA methylation of FADS2 and ELOVL5 in peripheral blood mononuclear cells. Schunck W-H, editor. PLoS ONE. 2014;9:e109896.10.1371/journal.pone.0109896
  • Jaudszus A, Gruen M, Watzl B, et al. Evaluation of suppressive and pro-resolving effects of EPA and DHA in human primary monocytes and T-helper cells. J Lipid Res. 2013;54:923–935.10.1194/jlr.P031260
  • Rovito D, Giordano C, Vizza D, et al. Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCF-7 breast cancer cells. J Cell Physiol. 2013;228:1314–1322.10.1002/jcp.v228.6
  • Fujiki K, Kano F, Shiota K, et al. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 2009;7:38.10.1186/1741-7007-7-38
  • Nilsson E, Jansson PA, Perfilyev A, et al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes. 2014;63:2962–2976.10.2337/db13-1459
  • Ling C, Del Guerra S, Lupi R, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008;51:615–622.10.1007/s00125-007-0916-5
  • Brøns C, Jacobsen S, Nilsson E, et al. Deoxyribonucleic acid methylation and gene expression of PPARGC1A in human muscle is influenced by high-fat overfeeding in a birth-weight-dependent manner. J Clin Endocrinol Metab. 2010;95:3048–3056.10.1210/jc.2009-2413
  • Kirchner H, Nylen C, Laber S, et al. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass. Surg Obes Relat Dis. 2014;10:671–678.10.1016/j.soard.2013.12.019
  • Epstein FH, Barnes PJ, Karin M. Nuclear factor-κB – a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–1071.10.1056/NEJM199704103361506
  • Zhao Y, Joshi-Barve S, Barve S, et al. Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J Am Coll Nutr. 2004;23:71–78.10.1080/07315724.2004.10719345
  • Sullivan KE, Reddy ABM, Dietzmann K, et al. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol. 2007;27:5147–5160.10.1128/MCB.02429-06
  • Kochanek S, Radbruch A, Tesch H, et al. DNA methylation profiles in the human genes for tumor necrosis factors alpha and beta in subpopulations of leukocytes and in leukemias. Proc Nat Acad Sci USA. 1991;88:5759–5763.10.1073/pnas.88.13.5759
  • Takei S, Fernandez D, Redford A, et al. Methylation status of 5’-regulatory region of tumor necrosis factor α gene correlates with differentiation stages of monocytes. Biochem Biophys Res Commun. 1996;220:606–612.10.1006/bbrc.1996.0450
  • Nimmo ER, Prendergast JG, Aldhous MC, et al. Genome-wide methylation profiling in Crohnʼs disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012;18:889–899.10.1002/ibd.21912
  • Zhu J, Xia L, Ji C, et al. Differential DNA methylation status between human preadipocytes and mature adipocytes. Cell Biochem Biophys. 2012;63:1–15.10.1007/s12013-012-9336-3
  • Gazzar ME, Yoza BK, Chen X, et al. G9a and HP1 couple histone and DNA methylation to TNF transcription silencing during endotoxin tolerance. J Biol Chem. 2008;283:32198–32208.10.1074/jbc.M803446200
  • Bollati V, Favero C, Albetti B, et al. Nutrients intake is associated with DNA methylation of candidate inflammatory genes in a population of obese subjects. Nutrients. 2014;6:4625–4639.10.3390/nu6104625
  • Hermsdorff HH, Mansego ML, Campión J, et al. TNF-alpha promoter methylation in peripheral white blood cells: relationship with circulating TNFα, truncal fat and n-6 PUFA intake in young women. Cytokine. 2013;64:265–271.10.1016/j.cyto.2013.05.028
  • Kochanek S, Toth M, Dehmel A, et al. Interindividual concordance of methylation profiles in human genes for tumor necrosis factors alpha and beta. Proc Nat Acad Sci USA. 1990;87:8830–8834.10.1073/pnas.87.22.8830
  • Lou S, Lee H-M, Qin H, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15:408.10.1186/s13059-014-0408-0
  • Gross TJ, Kremens K, Powers LS, et al. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol. 2014;192:2326–2338.10.4049/jimmunol.1301758
  • Hashimoto K, Otero M, Imagawa K, et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1 (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem. 2013;288:10061–10072.10.1074/jbc.M112.421156
  • Berkley AM, Hendricks DW, Simmons KB, et al. Recent thymic emigrants and mature naive T Cells exhibit differential DNA methylation at key cytokine loci. J Immunol. 2013;190:6180–6186.10.4049/jimmunol.1300181
  • Northrop JK, Thomas RM, Wells AD, et al. Epigenetic remodeling of the IL-2 and IFN-gamma loci in memory CD8 T cells is influenced by CD4 T cells. J Immunol. 2006;177:1062–1069.10.4049/jimmunol.177.2.1062
  • Williams CL, Schilling MM, Cho SH, et al. STAT4 and T-bet are required for the plasticity of IFN- expression across Th2 ontogeny and influence changes in Ifng promoter DNA methylation. J Immunol. 2013;191:678–687.10.4049/jimmunol.1203360
  • Caughey GE, Mantzioris E, Gibson RA, et al. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr. 1996;63:116–122.