10,895
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Interleukin-6 in atherosclerosis: atherogenic or atheroprotective?

ORCID Icon ORCID Icon, & ORCID Icon
Pages 14-23 | Received 30 Dec 2016, Accepted 11 Apr 2017, Published online: 08 May 2017

References

  • Hirano T, Taga T, Nakano N, et al. Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Nat Acad Sci USA. 1985;82:5490–5494.10.1073/pnas.82.16.5490
  • Hirano T, Yasukawa K, Harada H, et al. Complementary DNA for a novel human Interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 1986;324:73–76.10.1038/324073a0
  • Hirano T, Matsuda T, Hosoi K, et al. Absence of antiviral activity in recombinant B cell stimulatory factor 2 (BSF-2). Immunol Lett. 1988;17:41–45.10.1016/0165-2478(88)90099-5
  • Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1–38.
  • Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–1143.10.1161/hc0902.104353
  • Tedgui A, Mallat Z, Cytokines in Harker JA, et al. Late Interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science. 2011;334:825–829.
  • Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86:515–581.
  • Cimmino G, Loffredo FS, Morello A, et al. Immune-inflammatory activation in acute coronary syndromes: a look into the heart of unstable coronary plaque. Curr Cardiol Rev. 2016;13 Oct. [Epub ahead of print].
  • Okada M, Kitahara M, Kishimoto S, et al. IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J Immunol. 1988;141:1543–1549.
  • Ma CS, Deenick EK, Batten M, et al. The origins, function, and regulation of T follicular helper cells. J Exp Med. 2012;209:1241–1253.10.1084/jem.20120994
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238.10.1038/nature04753
  • Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 cells. Ann Rev Immunol. 2009;27:485–517.10.1146/annurev.immunol.021908.132710
  • Craft JE. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol. 2012;8:337–347.10.1038/nrrheum.2012.58
  • Yoshizaki K, Matsuda T, Nishimoto N, et al. Pathogenic significance of Interleukin-6 (IL-6/BSF-2) in Castleman’s disease. Blood. 1989;74:1360–1367.
  • Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238.10.1038/nature04753
  • Kopf M, Baumann H, Freer G, et al. Impaired immune and acute phase responses in Interleukin-6-deficient mice. Nature. 1994;368:339–342.10.1038/368339a0
  • Thompson JC, Jayne C, Thompson J, et al. A brief elevation of serum amyloid A is sufficient to increase atherosclerosis. J Lipid Res. 2015;56:286–293.10.1194/jlr.M054015
  • Rizzo M, Corrado E, Coppola G, et al. Markers of inflammation are strong predictors of subclinical and clinical atherosclerosis in women with hypertension. Coron Artery Dis. 2009;20:15–20.10.1097/MCA.0b013e3283109065
  • Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621–636.10.1042/bj2650621
  • Kaplanski G, Marin V, Montero-Julian F, et al. Farnarier C.IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24:25–29.10.1016/S1471-4906(02)00013-3
  • Cronstein BN. Interleukin-6 – a key mediator of systemic and local symptoms in rheumatoid arthritis. Bull NYU Hosp Jt Dis. 2007;65:S11–S15.
  • Wung BS, Ni CW, Wang DL. ICAM-1 induction by TNFalpha and IL-6 is mediated by distinct pathways via Rac in endothelial cells. J Biomed Sci. 2005;12:91–101.10.1007/s11373-004-8170-z
  • Kerr R, Stirling D, Ludlam CA. Interleukin 6 and haemostasis. Br J Hematol. 2001;115:3–12.10.1046/j.1365-2141.2001.03061.x
  • Kopf M, Ramsay A, Brombacher F, et al. Pleiotropic defects of IL-6-deficient mice including early hematopoiesis, T and B cell function, and acute phase responses. Ann NY Acad Sci. 1995;762:308–318.
  • Starkie R, Ostrowski SR, Jauffred S, et al. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans. FASEB J. 2003;17:884–886.
  • Tilg H, Dinarello CA, Mier JW. IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today. 1997;18:428–432.10.1016/S0167-5699(97)01103-1
  • Tilg H, Trehu E, Atkins MB, et al. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood. 1994;83:113–118.
  • Schindler R, Mancilla J, Endres S, et al. Correlations and interactions in the production of Interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood. 1990;75:40–47.
  • Steensberg A, Fischer CP, Keller C, et al. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285:E433–E437.10.1152/ajpendo.00074.2003
  • Lotz M, Guerne PA. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). J Biol Chem. 1991;266:2017–2020.
  • Silacci P, Dayer JM, Desgeorges A, et al. Interleukin (IL)-6 and its soluble receptor induce TIMP-1 expression in synoviocytes and chondrocytes, and Block IL-1-induced collagenolytic activity. J Biol Chem. 1998;273:13625–13629.10.1074/jbc.273.22.13625
  • Somers W, Stahl M, Seehra JS. 1.9 A crystal structure of Interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997;16:989–997.10.1093/emboj/16.5.989
  • Dayer J, Choy E. Therapeutic targets in rheumatoid arthritis: the Interleukin-6 receptor. Rheumatology. 2010;49:15–24.10.1093/rheumatology/kep329
  • Cron L, Allen T, Febbraio MA. The role of gp130 receptor cytokines in the regulation of metabolic homeostasis. J Exp Biol. 2016;219:259–265.10.1242/jeb.129213
  • Garbers C, Hermanns HM, Schaper F, et al. Plasticity and cross-talk of Interleukin 6-type cytokines. Cytokine Growth Factor Rev. 2012;23:85–97.10.1016/j.cytogfr.2012.04.001
  • Schaper F, Rose-John S. Interleukin-6: biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 2015;26:475–487.10.1016/j.cytogfr.2015.07.004
  • Yamasaki K, et al. Cloning and expression of the human Interleukin-6 (BSF-2/IFN beta 2) receptor. Science. 1988;241:825–828.10.1126/science.3136546
  • Gooz M. ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol. 2010;45:146–169.10.3109/10409231003628015
  • Rose-John S, Waetzig GH, Scheller J, et al. The IL-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets. 2007;11:613–624.10.1517/14728222.11.5.613
  • Waetzig GH, Chalaris A, Rosenstiel P, et al. N-linked glycosylation is essential for the stability but not the signaling function of the Interleukin-6 signal transducer glycoprotein 130. J Biol Chem. 2010;285:1781–1789.10.1074/jbc.M109.075952
  • Heinrich PC, Behrmann I, Haan S, et al. Principles of Interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.10.1042/bj20030407
  • Schindler C, Darnell JE Jr. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Ann Rev Biochem. 1995;64:621–652.10.1146/annurev.bi.64.070195.003201
  • Garbers C, Aparicio-Siegmund S, Rose-John S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr Opin Immunol. 2015;34:75–82.10.1016/j.coi.2015.02.008
  • Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70:11–20.10.1016/j.cyto.2014.05.024
  • Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8:S3.10.1186/ar1917
  • Sodenkamp J, Waetzig GH, Scheller J, et al. Therapeutic targeting of Interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology. 2012;217:996–1004.10.1016/j.imbio.2012.01.015
  • Hoge J, Yan I, Jänner N, et al. IL-6 controls the innate immune response against listeria monocytogenes via classical IL-6 signaling. J Immunol. 2013;190:703–711.10.4049/jimmunol.1201044
  • Barkhausen T, Tschernig T, Rosenstiel P, et al. Selective blockade of Interleukin-6 trans -signaling improves survival in a murine polymicrobial sepsis model. Crit Care Med. 2011;39:1407–1413.10.1097/CCM.0b013e318211ff56
  • Harris TB, Ferrucci L, Tracy RP, et al. Associations of elevated Interleukin-6 and C-reactive protein levels with mortality in the elderly. Am J Med. 1999;106:506–512.10.1016/S0002-9343(99)00066-2
  • Mendall MA, Patel P, Asante M, et al. Relation of serum cytokine concentrations to cardiovascular risk factors and coronary heart disease. Heart. 1997;78:273–277.10.1136/hrt.78.3.273
  • Ridker PM, Rifai N, Stampfer MJ, et al. Plasma concentration of Interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767–1772.10.1161/01.CIR.101.15.1767
  • Zakai NA, Katz R, Jenny NS, et al. Inflammation and hemostasis biomarkers and cardiovascular risk in the elderly: the Cardiovascular Health Study. J Thromb Haemost. 2007;5:1128–1135.10.1111/jth.2007.5.issue-6
  • Lefkou E, Fragakis N, Ioannidou E, et al. Increased levels of proinflammatory cytokines in children with family history of coronary artery disease. Clin Cardiol. 2010;33:E6–10.
  • Fisman EZ, Benderly M, Esper RJ, et al. Interleukin-6 and the risk of future cardiovascular events in patients with angina pectoris and/or healed myocardial infarction. Am J Cardiol. 2006;98:14–18.10.1016/j.amjcard.2006.01.045
  • Fan ZX, Hua Q, Li YP, et al. Interleukin-6, but not soluble adhesion molecules, predicts a subsequent mortality from cardiovascular disease in patients with acute ST-segment elevation myocardial infarction. Cell Biochem Biophys. 2011;61:443–448.10.1007/s12013-011-9209-1
  • Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al. Expression of angiotensin II and Interleukin 6 in human coronary atherosclerotic plaques : potential implications for inflammation and plaque instability. Circulation. 2000;101:1372–1378.10.1161/01.CIR.101.12.1372
  • Fuchs M, Hilfiker A, Kaminski K, et al. Role of Interleukin-6 for LV remodeling and survival after experimental myocardial infarction. FASEB J. 2003;17:2118–2120.
  • Hartman MH, Vreeswijk-Baudoin I, Groot HE, et al. Inhibition of Interleukin-6 receptor in a murine model of myocardial ischemia-reperfusion. Plos One. 2016;11:e0167195.10.1371/journal.pone.0167195
  • Haffner SM, Lehto S, Rönnemaa T, et al. Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–234.10.1056/NEJM199807233390404
  • Fernandez-Real JM, Ricart J. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev. 2003;24:278–301.10.1210/er.2002-0010
  • Kado S, Nagase T, Nagata N. Circulating levels of interleukin-6, its soluble receptor and interleukin-6/interleukin-6 receptor complexes in patients with type 2 diabetes mellitus. Acta Diabetol. 1999;36:67–72.10.1007/s005920050147
  • Pickup JC, Chusney GD, Thomas SM, et al. Plasma interleukin-6, tumour necrosis factor alpha and blood cytokine production in Type 2 diabetes. Life Sci. 2000;67:291–300.10.1016/S0024-3205(00)00622-6
  • Pedersen M, Bruunsgaard H, Weis N, et al. Circulating levels of TNF-alpha and IL-6-relation to truncal fat mass and muscle mass in healthy elderly individuals and in patients with Type-2 diabetes. Mech Ageing Dev. 2003;124:495–502.10.1016/S0047-6374(03)00027-7
  • Lowe G, Woodward M, Hillis G, et al. Circulating inflammatory markers and the risk of vascular complications and mortality in people with Type 2 diabetes and cardiovascular disease or risk factors: the advance study. Diabetes. 2014;63:1115–1123.10.2337/db12-1625
  • Kahn A, Jing N, Li JH, et al. Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am J Nephrol. 2004;24:387–392.
  • Ikeda U, Ikeda M, Oohara T, et al. Interleukin 6 stimulates growth of vascular smooth muscle cells in a PDGF-dependent manner. Am J Physiol. 1991;260:H1713–H1717.
  • Morimoto S, Nabata T, Koh E, et al. Interleukin-6 stimulates proliferation of cultured vascular smooth muscle cells independently of interleukin-1 beta. J Cardiovasc Pharmacol. 1991;17:S117–S118.10.1097/00005344-199117002-00026
  • Wung BS, Hsu MC, Wu CC, et al. Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: effects on the inhibition of STAT3 phosphorylation. Life Sci. 2005;78:389–397.10.1016/j.lfs.2005.04.052
  • Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med. 2007;357:2482–2494.10.1056/NEJMra071014
  • Oleksowicz L, Mrowiec Z, Zuckerman D, et al. Platelet activation induced by interleukin-6: evidence for a mechanism involving arachidonic acid metabolism. Thromb Haemost. 1994;72:302–308.
  • Gierens H, Nauck M, Roth M, et al. Interleukin-6 stimulates LDL receptor gene expression via activation of sterol-responsive and Sp1 binding elements. Arterioscler Thromb Vasc Biol. 2000;20:1777–1783.10.1161/01.ATV.20.7.1777
  • Klouche M, Bhakdi S, Hemmes M, et al. Novel path to activation of vascular smooth muscle cells: up-regulation of gp130 creates an autocrine activation loop by IL-6 and its soluble receptor. J Immunol. 1999;163:4583–4589.
  • Selzman CH, Miller SA, Zimmerman MA, et al. Monocyte chemotactic protein-1 directly induces human vascular smooth muscle proliferation. Am J Physiol Heart Circ Physiol. 2002;283:H1455–H1461.10.1152/ajpheart.00188.2002
  • Ishibashi T, Kimura H, Shikama Y, et al. Interleukin-6 is a potent thrombopoietic factor in vivo in mice. Blood. 1989;74:1241–1244.
  • Laterveer L, van Damme J, Willemze R, et al. Continuous infusion of interleukin-6 in sublethally irradiated mice accelerates platelet reconstitution and the recovery of myeloid but not of megakaryocytic progenitor cells in bone marrow. Exp Hematol. 1993;21:1621–1627.
  • Ceresa IF, Noris P, Ambaglio C, et al. Thrombopoietin is not uniquely responsible for thrombocytosis in inflammatory disorders. Platelets. 2007;18:579–582.10.1080/09537100701593601
  • Heits F, Stahl M, Ludwig D, et al. Elevated serum thrombopoietin and Interleukin-6 concentrations in thrombocytosis associated with inflammatory bowel disease. J Interferon Cytokine Res. 1999;19:757–760.10.1089/107999099313604
  • Yan SL, Russell J, Granger DN. Platelet Activation and platelet-leukocyte aggregation elicited in experimental colitis are mediated by Interleukin-6. Inflamm Bowel Dis. 2014;20:353–362.10.1097/01.MIB.0000440614.83703.84
  • Tsakadze NL, Zhao Z, D’Souza SE. Interaction of inter-cellular adhesion molecule-1 with fibrinogen. Trends Cardiovasc Med. 2002;12:101–108.10.1016/S1050-1738(01)00157-8
  • Huber SA, Sakkinen P, Conze D, et al. Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 1999;19:2364–2367.10.1161/01.ATV.19.10.2364
  • Oleksowicz L, Mrowiec Z, Isaacs R, et al. Morphologic and ultrastructural evidence of interleukin-6 induced platelet activation. Am J Hematol. 1995;48:92–99.10.1002/ajh.v48.2
  • Marino M, Scuderi F, Ponte E, et al. Novel path to IL-6 trans-signaling through thrombin-induced soluble IL-6 receptor release by platelets. J Biol Regul Homeost Agents. 2013;27:841–852.
  • Chen Q, Fisher DT, Clancy KA, et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol. 2006;7:1299–1308.10.1038/ni1406
  • Patel SS, Thiagarajan R, Willerson JT, et al. Inhibition of α4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoE-deficient mice. Circulation. 1998;97:75–81.10.1161/01.CIR.97.1.75
  • Erzen B, Sabovic M, Sebestjen M, et al. Interleukin-6 correlates with endothelial dysfunction in young post-myocardial infarction patients. Cardiology. 2007;107:111–116.
  • Schuett H, Oestreich R, Waetzig GH, et al. Transsignaling of Interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2012;32:281–290.10.1161/ATVBAHA.111.229435
  • Ferreira RC, Freitag DF, Cutler AJ, et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 2013;9:e1003444.10.1371/journal.pgen.1003444
  • Swerdlow DI, Holmes MV, Kuchenbaecker KB, et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379:1214–1224. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium.
  • Ridker PM. From C-reactive protein to Interleukin-6 to Interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118:145–156.10.1161/CIRCRESAHA.115.306656
  • Liu YC, Zou XB, Chai YF, et al. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10:520–529.10.7150/ijbs.8879
  • Mantovani A, Garlanda C, Locati M. Macrophage diversity and polarization in atherosclerosis: a question of balance. Arterioscler Thromb Vasc Biol. 2009;29:1419–1423.10.1161/ATVBAHA.108.180497
  • El Hadri K, Mahmood DF, Couchie D, et al. Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1445–1452.10.1161/ATVBAHA.112.249334
  • Al-Sharea A, Lee MK, Moore XL, et al. Native LDL promotes differentiation of human monocytes to macrophages with an inflammatory phenotype. Thromb Haemost. 2016;115:762–772.
  • Jin X, Yao T, Zhou Z, et al. Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. Biomed Res Int. 2015;2015:732450.
  • Ho MM, Manughian-Peter A, Spivia WR, et al. Macrophage molecular signaling and inflammatory responses during ingestion of atherogenic lipoproteins are modulated by complement protein C1q. Atherosclerosis. 2016;253:38–46.
  • Spivia W, Magno PS, Le P, et al. Complement protein C1q promotes macrophage anti-inflammatory M2-like polarization during the clearance of atherogenic lipoproteins. Inflamm Res. 2014;63:885–893.10.1007/s00011-014-0762-0
  • Andrews KL, Sampson AK, Irvine JC, et al. Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization. Clin Sci (Lond). 2016;130:1629–1640.10.1042/CS20160097
  • Yin K, You Y, Swier V, et al. Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler Thromb Vasc Biol. 2015;35:2432–2442.10.1161/ATVBAHA.115.306132
  • Hill AA, Reid Bolus W, Hasty AH. A decade of progress in adipose tissue macrophage biology. Immunol Rev. 2014;262:134–152.10.1111/imr.2014.262.issue-1
  • Kraakman MJ, Kammoun HL, Allen TL, et al. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 2015;21:403–416.10.1016/j.cmet.2015.02.006
  • Mauer J, Chaurasia B, Goldau J, et al. Signaling by IL-6 promotes alternative activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat Immunol. 2014;15:423–430.10.1038/ni.2865
  • Braune J, Weyer U, Hobusch C, et al. IL-6 regulates M2 polarization and local proliferation of adipose tissue macrophages in obesity. J Immunol. 2016;198:2927–2934.
  • Levitan I, Volkov S. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox. 2010;13:39–75.10.1089/ars.2009.2733
  • Wang R, Zhang Y, Xu L, et al. Protein inhibitor of activated STAT3 suppresses oxidized LDL-induced Cell responses during atherosclerosis in apolipoprotein E-deficient mice. Sci Rep. 2016;6:36790.10.1038/srep36790
  • Reiss AB, Glass AD. CD36 and ScR-A: scavenger receptors that mediate uptake of oxidized LDL and foam cell formation. In: Reiss A, Carsons S, Cronstein B, editors. Proteins involved in the pathogenesis of atherosclerosis. Trivandrum, Kerala: Research Signpost; 2006. p. 1–12.
  • Keidar S, Heinrich R, Kaplan M, et al. Angiotensin II administration to atherosclerotic mice increases macrophage uptake of oxidized LDL: a possible role for Interleukin-6. Arterioscler Thromb Vasc Biol. 2001;21:1464–1469.10.1161/hq0901.095547
  • Hashizume M, Mihara M. Atherogenic effects of TNF-α and IL-6 via up-regulation of scavenger receptors. Cytokine. 2012;58:424–430.10.1016/j.cyto.2012.02.010
  • Hashizume M, Mihara M. Blockade of IL-6 and TNF-α inhibited oxLDL-induced production of MCP-1 via scavenger receptor induction. Eur J Pharmacol. 2012;689:249–254.10.1016/j.ejphar.2012.05.035
  • Liao HS, Matsumoto A, Itakura H, et al. Transcriptional inhibition by Interleukin-6 of the class A macrophage scavenger receptor in macrophages derived from human peripheral monocytes and the THP-1 monocytic cell line. Arterioscler Thromb Vasc Biol. 1999;19:1872–1880.10.1161/01.ATV.19.8.1872
  • Frisdal E, Lesnik P, Olivier M, et al. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J Biol Chem. 2011;286:30926–30936.10.1074/jbc.M111.264325
  • Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50:213–224.10.1016/j.plipres.2011.02.001
  • Gomaraschi M, Basilico N, Sisto F, et al. High-density lipoproteins attenuate interleukin-6 production in endothelial cells exposed to pro-inflammatory stimuli. Biochim Biophys Acta. 2005;1736:136–143.10.1016/j.bbalip.2005.08.003
  • Robert J, Lehner M, Frank S, et al. Interleukin 6 stimulates endothelial binding and transport of high-density lipoprotein through induction of endothelial lipase. Arterioscler Thromb Vasc Biol. 2013;33:2699–2706.10.1161/ATVBAHA.113.301363
  • Zuliani G, Volpato S, Blè A, et al. High Interleukin-6 plasma levels are associated with low HDL-C levels in community-dwelling older adults: the inchianti study. Atherosclerosis. 2007;192:384–390.10.1016/j.atherosclerosis.2006.05.024
  • Cucuianu M, Coca M, Hancu N. Reverse cholesterol transport and atherosclerosis. a mini review. Rom J Intern Med. 2007;45:17–27.
  • Oda MN. High-density lipoprotein cholesterol: origins and the path ahead. Curr Opin Endocrinol Diabetes Obes. 2015;22:133–141.10.1097/MED.0000000000000139
  • Lee MK, Moore XL, Fu Y, et al. High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br J Pharmacol. 2016;173:741–751.10.1111/bph.v173.4
  • Sanson M, Distel E, Fisher EA. HDL induces the expression of the M2 macrophage markers Arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS One. 2013;8:e74676.10.1371/journal.pone.0074676
  • Naz SM, Symmons DP. Mortality in established rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2007;21:871–883.10.1016/j.berh.2007.05.003
  • Choi HK, Hernan MA, Seeger JD, et al. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet. 2002;359:1173–1177.10.1016/S0140-6736(02)08213-2
  • Everett BM, Pradhan AD, Solomon DH, et al. Rationale and design of the cardiovascular inflammation reduction trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J. 2013;166:199–207.10.1016/j.ahj.2013.03.018
  • Ridker PM. Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J Thromb Haemost. 2009;7:332–339.10.1111/jth.2009.7.issue-s1
  • Balsa A, Tovar Beltran JV, Caliz R, et al. Patterns of use and dosing of tocilizumab in the treatment of patients with rheumatoid arthritis in routine clinical practice: the ACT-LIFE study. Rheumatol Int. 2015;35:1525–1534.10.1007/s00296-015-3237-x
  • Kaly L, Rosner I. Tocilizumab – a novel therapy for non-organ-specific autoimmune diseases. Best Pract Res Clin Rheumatol. 2012;26:157–165.10.1016/j.berh.2012.01.001
  • Hashizume M, Tan SL, Takano J, et al. Tocilizumab, a humanized Anti-IL-6R antibody, as an emerging therapeutic option for rheumatoid arthritis: molecular and cellular mechanistic insights. Int Rev Immunol. 2015;34:265–279.10.3109/08830185.2014.938325
  • Hirabayashi Y, Ishii T, Harigae H. Clinical efficacy of tocilizumab in patients with active rheumatoid arthritis in real clinical practice. Rheumatol Int. 2010;30:1041–1048.10.1007/s00296-009-1095-0
  • Gabay C, McInnes IB, Kavanaugh A, et al. Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75:1806–1812.10.1136/annrheumdis-2015-207872
  • Genovese MC, McKay JD, Nasonov EL, et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy. Arthritis Rheum. 2008;58:2968–2980.10.1002/art.v58:10
  • Lee JS, Chapman MJ, Piraino P, et al. Remodeling of plasma lipoproteins in patients with rheumatoid arthritis: Interleukin-6 receptor-alpha inhibition with tocilizumab. Proteomics Clin Appl. 2016;10:183–194.10.1002/prca.v10.2
  • Marcovina SM, Albers JJ. Lipoprotein (a) measurements for clinical application. J Lipid Res. 2016;57:526–537.10.1194/jlr.R061648
  • Müller N, Schulte DM, Türk K, et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res. 2015;56:1034–1042.10.1194/jlr.P052209
  • Schultz O, Oberhauser F, Saech J, et al. Effects of inhibition of Interleukin-6 signalling on insulin sensitivity and lipoprotein (A) levels in human subjects with rheumatoid diseases. PLoS One. 2010;5:e14328.10.1371/journal.pone.0014328
  • Nordestgaard BG, Chapman MJ, Ray K, et al. European atherosclerosis society consensus panel. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31:2844–2853.10.1093/eurheartj/ehq386
  • Soubrier M, Pei J, Durand F, et al. Concomitant use of statins in tocilizumab-treated patients with rheumatoid arthritis: a post hoc analysis. Rheumatol Ther. 2016;Nov 29. [Epub ahead of print].
  • Kume K, Amano K, Yamada S, et al. Tocilizumab monotherapy reduces arterial stiffness as effectively as etanercept or adalimumab monotherapy in rheumatoid arthritis: an open-label randomized controlled trial. J Rheumatol. 2011;38:2169–2171.10.3899/jrheum.110340
  • Welsh P, Tuckwell K, McInnes IB, et al. Effect of IL-6 receptor blockade on high-sensitivity troponin T and NT-proBNP in rheumatoid arthritis. Atherosclerosis. 2016;254:167–171.10.1016/j.atherosclerosis.2016.10.016
  • Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813:878–888.10.1016/j.bbamcr.2011.01.034
  • Md Yusof MY, Emery P. Targeting Interleukin-6 in rheumatoid arthritis. Drugs. 2013;73:341–356.10.1007/s40265-013-0018-2
  • Luchtefeld M, Schunkert H, Stoll M, et al. Signal transducer of inflammation gp130 modulates atherosclerosis in mice and man. J Exp Med. 2007;204:1935–1944.10.1084/jem.20070120
  • Schieffer B, Selle T, Hilfiker A, et al. Impact of Interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 2004;110:3493–3500.10.1161/01.CIR.0000148135.08582.97
  • Sarwar N, Butterworth AS, Freitag DF, et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379:1205–1213. IL6R Genetics Consortium Emerging Risk Factors Collaboration.